Established in 2020 Saturday, February 4, 2023


Click beetle-inspired robots jump using elastic energy
Mechanical sciences and engineering professor Sameh Tawfick led a new study introducing click beetle-sized robots small enough to fit into tight spaces, powerful enough to maneuver over obstacles and fast enough to match an insect’s rapid escape time. Image courtesy: Michael Vincent.



CHAMPAIGN, IL.- Researchers have made a significant leap forward in developing insect-sized jumping robots capable of performing tasks in the small spaces often found in mechanical, agricultural and search-and-rescue settings.

A new study led by mechanical science and engineering professor Sameh Tawfick demonstrates a series of click beetle-sized robots small enough to fit into tight spaces, powerful enough to maneuver over obstacles and fast enough to match an insect’s rapid escape time.

The findings were published in the Proceedings of the National Academy of Sciences.

Researchers at the University of Illinois Urbana-Champaign and Princeton University have studied click beetle anatomy, mechanics and evolution over the past decade. A 2020 study found that snap buckling – the rapid release of elastic energy – of a coiled muscle within a click beetle’s thorax is triggered to allow them to propel themselves in the air many times their body length, as a means of righting themselves if flipped onto their backs.

“One of the grand challenges of small-scale robotics is finding a design that is small, yet powerful enough to move around obstacles or quickly escape dangerous settings,” Tawfick said.

In the new study, Tawfick and his team used tiny coiled actuators – analogous to animal muscles – that pull on a beam-shaped mechanism, causing it to slowly buckle and store elastic energy until it is spontaneously released and amplified, propelling the robots upward.




“This process, called a dynamic buckling cascade, is simple compared to the anatomy of a click beetle,” Tawfick said. “However, simple is good in this case because it allows us to work and fabricate parts at this small scale.”

Guided by biological evolution and mathematical models, the team built and tested four device variations, landing on two configurations that can successfully jump without manual intervention.

“Moving forward, we do not have a set approach on the exact design of the next generation of these robots, but this study plants a seed in the evolution of this technology – a process similar to biologic evolution,” Tawfick said.

The team envisions these robots accessing tight spaces to help perform maintenance on large machines like turbines and jet engines, for example, by taking pictures to identify problems.

“We also imagine insect-scale robots being useful in modern agriculture,” Tawfick said. “Scientists and farmers currently use drones and rovers to monitor crops, but sometimes researchers need a sensor to touch a plant or to capture a photograph of a very small-scale feature. Insect-scale robots can do that.”

Researchers from the University of Birmingham, UK; Oxford University; and the University of Texas at Dallas also participated in this research.

The Defense Advanced Research Projects Agency, the Toyota Research Institute North America, the National Science Foundation and The Royal Society supported this study.







Today's News

January 25, 2023

New pterosaur species with hundreds of tiny hooked teeth discovered

When chronic stress activates these neurons, behavioral problems like loss of pleasure, depression result

Power of cancer drugs may see boost by targeting newly identified pathway

Randomness in quantum machines helps verify their accuracy

A soybean protein blocks LDL cholesterol production, reducing risks of metabolic diseases

Propionic acid protects nerve cells and helps them regenerate, shows study

Pharming the microbiome

Stress may trigger male defense against predators

Astronomers snap first confirmed direct image of a brown dwarf orbiting a star in the Hyades Cluster

Click beetle-inspired robots jump using elastic energy

Putting clear bounds on uncertainty

Earlier geomagnetic storm prediction wins us time to prepare

Sharks, spatial data, and a conservation success story

How a sugar cane pathogen is gearing up a new era of antibiotic discovery

Traffic pollution impairs brain function

Boosting efficiency of genome editing procedures to modify initially inaccessible DNA sequences

New DNA biosensor could unlock powerful, low-cost clinical diagnostics

Transforming chaos into manufacturable forms with 3D printing

How to start your own e-commerce business



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful