Established in 2020 Wednesday, April 17, 2024


The core of powerful, power-efficient processors
Intel’s Alder Lake processor, showing the heterogeneous design, combines 6 high-performance cores and 8 low-power cores. Image courtesy: UC San Diego.



SAN DIEGO, CA.- The high-performance yet low-power processors running billions of today’s laptops and mobile devices come thanks to research by computer scientists at the University of California San Diego and HP Labs.

Their work, which began nearly two decades ago, has influenced the design of many modern processors such as ARM’s big.Little, Qualcomm’s Snapdragon, Intel’s Alder Lake and Apple’s flagship Apple M1, including the recently announced M1Pro and M1 Max.

“Nearly everyone probably has one running something in their lives,” said Dean Tullsen, a UC San Diego Computer Science and Engineering professor who was part of the team who set the foundation for a new way of thinking about processors.

Now, the paper that led to a novel processor architecture that would provide significant energy benefits has been recognized for its lasting impact with a MICRO Test of Time Award.

The paper, “Single-ISA Heterogenous Multi-Core Architectures: The Potential for Processor Power Reduction” published in 2003, has since been cited more than 1,000 times and spawned several impactful academic and industrial projects on heterogeneous systems.

“This simple, but powerful idea now drives a large number of computer systems,” said Luiz Barroso, a Google Fellow and head of the Office of Cross-Google Engineering, who nominated the paper.




At the time their paper was published, processors were increasing in performance and speed, resulting in challenges with power consumption and heat dissipation in designing future high-performance systems.

Multicores, which mean more than one processor core on a single chip, were just starting to enter the market. However, all commercial designs, and in fact all roadmaps from the processor vendors, assumed all cores were identical (as virtually all multi-chip multiprocessors had been before that). The team challenged that assumption and pointed out that if the cores were different, they could better address the variation in program behavior and changes in environment.

They proposed a new architecture for processors that would switch among cores to optimize energy and performance. Their multi-core model would allow software to evaluate the resource requirements of an application (or part of an application) and choose the core that would best meet the requirements while minimizing energy consumption.

“Contrary to homogeneous multi-cores, which were state-of-art then, the paper showed that putting cores with different power-performance characteristics on the same die with intelligent application mapping produces large improvements in energy efficiency,” said Barroso.

Powerful collaborations
The paper’s lead author, Rakesh Kumar, then a Ph.D. student in the Department of Computer Science and Engineering who was being mentored by Tullsen, took a summer internship at HP Labs to begin the project. Kumar and Tullsen formed a partnership with Norman Jouppi, Parthasarathy Ranganathan, and Keith Farkas from HP.

The team continued their research for several years, publishing seven papers on the topic. This turned out to be quite an influential group, as they went on to amass numerous Test of Time awards on various topics: five for Tullsen, four for Norman Jouppi of HP Labs (now Google), and two for Kumar, who is now an associate professor at University of Illinois, Urbana-Champaign. Ranganathan is currently a vice president at Google and Farkas is currently with VMWare.

“This ended up being one of my favorite research projects ever,” said Tullsen. “Not just because of the widespread impact it had, but because of the amazing group of people I got to work with.”







Today's News

December 4, 2021

Restoring heart elasticity in a heart failure model

Rapid test identifies antibody effectiveness against COVID-19 variants

Molecular device turns infrared into visible light

Mystery solved: Footprints from site at Laetoli, Tanzania, are from early humans, not bears

The Norwegian wolf is extinct

Scientists solve an important part of the mystery of ultra-rare blood clots linked to adenovirus-based COVID-19 vaccines

Artificial material protects light states on smallest length scales

Gene-editing used to create single sex mice litters

Studying our solar system's protective bubble

COVID-19 boosters are safe and increase immunity when given after two doses of AstraZeneca or Pfizer, trial shows

Where did western honey bees come from? New research finds the sweet spot

Microplastic pollution aids antibiotic resistance

How well masks protect

2021 Animal Welfare Research Prize for Max Planck researchers

The core of powerful, power-efficient processors

Lightweight space robot with precise control developed

Astronomers discover hot, dense planet with eight-hour year

Tropical forests recover after deforestation



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful