Established in 2020 Wednesday, April 17, 2024


Boosting thermopower of oxides via artificially laminated metal/insulator heterostructure
Thermoelectric materials have the ability to generate electricity when a temperature difference is applied to them. Image courtesy: Tokyo Tech.



TOKYO.- Thermoelectric materials have the ability to generate electricity when a temperature difference is applied to them. Conversely, they can also generate a temperature gradient when current is applied to them. Therefore, these materials are expected to find use as power generators of electronic devices and coolers or heaters of temperature control devices. To develop these applications, a thermoelectric material showing high thermoelectric voltage (called thermopower S), even on applying low thermal energy, is required. However, conventional thermoelectric materials exhibit high conversion efficiency at high temperatures, whereas there are only a few candidates that show high conversion performance at below room temperature.

Recently, a team of researchers from Tokyo Tech, led by Associate Professor Takayoshi Katase, developed a new method to significantly enhance S at low temperatures. In a recent paper published in Nano Letters, the team reported an unusually large enhancement of S observed in laminate structures made of an ultra-thin film of the transition metal oxide LaNiO3 sandwiched between two insulating layers of LaAlO3.

"We clarified that the unexpected increase in S was not caused by usual thermoelectric phenomenon but by the "phonon-drag effect" arising from the strong interaction of electrons and phonons. If the phonon-drag effect is strong, the flowing phonons can drive the electrons to produce extra thermoelectric voltage when a temperature difference is applied. This phenomenon is not observed in LaNiO3 bulk but appears upon reducing the layer thickness of LaNiO3 film and confining it between insulating LaAlO3 layers," explained Dr. Katase.

By reducing the thickness of LaNiO3 films down to just 1 nm and sandwiching the film between LaAlO3 layers, the team was able to enhance S at least 10-fold. This enhancement was observable for a wide range of temperatures up to 220 K. The experimental analyses revealed that the phonon drag effect originated from enhanced electron-phonon interaction by massive electrons confined in the LaNiO3 layer and the flowing phonons leaking from the upper and lower LaAlO3 layers.

"The findings from this study can be used to explore new high-performance thermoelectric materials by designing the laminate structures of different oxides that can improve energy generation and fuel utilization," concludes Dr. Katase.







Today's News

December 5, 2021

Beads of glass in meteorites help scientists piece together how solar system formed

Wrangling an octopus-like viral replication machine

Three-dimensional imaging with optical frequency combs

Chemical pollutants disrupt reproduction in anemonefish, study finds

Researcher outlines how whales' sensory systems have evolved through imaging technology

Study reveals that giant planets could reach 'maturity' much earlier than previously thought

Combined heat and power as a platform for clean energy systems

Cannabis impacts sperm counts, motility in two generations of mice

Mapping RNAs

Snake photo posted on Instagram leads to the discovery of a new species from the Himalayas

Tracing European conflicts using lead isotopes in paints used by Dutch masters

Some polycrystal grain boundaries feel the heat more than others

How does the climate crisis affect the Antarctic fur seal?

A package of policies can help smallholder farmers adapt to a changing climate

Research finds nasal problem plagued long-nosed crocodile relatives

Microfabricated thin-film electrodes show therapeutic promise

Boosting thermopower of oxides via artificially laminated metal/insulator heterostructure

Green information technologies: Superconductivity meets spintronics



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful