Established in 2020 Saturday, February 24, 2024


Wearable sensor measures airborne nicotine exposure from e-cigarettes
This flexible nicotine sensor attaches to skin, continuously measuring the wearer’s exposure. Image: ACS Sensors 2021, DOI: 10.1021/acssensors.1c01633.



WASHINGTON, DC.- Some studies have shown that nicotine, an addictive substance in electronic cigarettes, increases the risk of cardiovascular and respiratory disorders. But to get a full understanding of its potential health effects, a real-time nicotine monitoring device is needed. Such a device could also help vapers — as well as non-vapers who encounter second-hand smoke — measure their exposure. Now, researchers report in ACS Sensors that they have developed a battery-free, wearable device that could accomplish this task.




E-cigarettes are designed to heat and aerosolize a mixture of nicotine, glycerine, propylene glycol and flavoring additives, which the user then inhales. In the body, this mixture can affect multiple organs, including the respiratory system, where it alters airflow, increases oxidative stress and impairs immunity. In addition, nicotine exposure can lead to lung cancer. But assessing that exposure under real-world conditions has been difficult. Current assays for measuring ambient nicotine levels are carried out in laboratory settings and require large sample volumes and days to weeks of sampling. Portable nicotine sensors are being developed as an alternative, but the two that have been reported are impractical because they rely either on the presence of sweat or sunlight to function. So Madhu Bhaskaran, Md. Ataur Rahman and Philipp Gutruf set out to design a lightweight, wearable sensor capable of detecting nicotine in real time and sending the data wirelessly to electronic devices such as a smartphone.

The team chose vanadium dioxide (VO2) on a polyimide substrate as the basis for their sensor. They showed that nicotine can bond covalently to a thin film of VO2, thereby altering the film’s conductivity to an extent that depends on nicotine concentration. The device detects the change in conductivity, amplifies the signal and then transmits it wirelessly to a smartphone. When applied to skin, the battery-free sensor can measure the wearer’s exposure to vaporized nicotine in open air. The researchers say this approach expands the use of wearable electronics for real-time monitoring of hazardous substances in the environment.

The authors acknowledge funding from the Australian Research Council.







Today's News

December 18, 2021

'Mini-brains' provide clues about early life origins of schizophrenia

Sauropod dinosaurs were restricted to warmer regions of Earth

HKUMed finds Omicron SARS-CoV-2 can infect faster and better than Delta in human bronchus

Gene mutation leads to epileptic encephalopathy symptoms, neuron death in mice

Opening a 50-year-old Christmas present from the moon

Selective separation could help alleviate critical metals shortage

To build the quantum internet, UChicago engineer teaches atoms how to remember

Cambridge coronavirus vaccine enters clinical trial

Stanford engineers and physicists study quantum characteristics of 'combs' of light

To find energetic particles from space, a new detector will soar over Antarctic ice

Differences in brain structure and genetics linked to chronic pain

Are black holes and dark matter the same?

After thousands of years, an iconic whale confronts a new enemy

Wearable sensor measures airborne nicotine exposure from e-cigarettes

Pioneering new technique to barcode cells

Discovering sources of Roman silver coinage from the Iberian Peninsula

The climate system relies on microscopic particles

Giving bug-like bots a boost



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful