Established in 2020 Wednesday, April 17, 2024


Ancient microorganisms found in halite may have implications for search for life
Fluid inclusions in halite with microorganisms. Image courtesy: Sara Schreder-Gomes.



WASHINGTON, DC.- Primary fluid inclusions in bedded halite from the 830-million-year-old Browne Formation of central Australia contain organic solids and liquids, as documented with transmitted light and UV-vis petrography. These objects are consistent in size, shape, and fluorescent response to cells of prokaryotes and algae, and aggregates of organic compounds. This discovery shows that microorganisms from saline depositional environments can remain well preserved in halite over hundreds of millions of years and can be detected in situ with optical methods alone. This study, published in Geology, has implications for the search for life in both terrestrial and extraterrestrial chemical sedimentary rocks.

As halite crystals grow in saline surface waters, it traps parent water in primary fluid inclusions. In addition to trapping parent waters, they can trap any solids that were in the water near/on the crystal face. These solids include tiny crystals of evaporite minerals or organics. Previous studies of modern to Permian halites have documented the presence of prokaryotic and eukaryotic organisms and organic compounds including beta carotene.

The study used non-destructive, optical techniques to identify and document organic material in primary fluid inclusions in 830-million-year-old halite. Sara Schreder-Gomes, Kathleen Benison, and Jeremiah Bernau had access to core samples from the Neoproterozoic Browne Formation thanks to the Geological Survey of Western Australia.

The halite was well preserved and allowed them to examine halite crystals from 10 halite beds from varying depths. They used transmitted light petrography and UV-visible light petrography to identify primary fluid inclusions and their contents. The team found that solids trapped in fluid inclusions were consistent with prokaryotic and eukaryotic cells, and with organic compounds, based on their size, shape, and fluorescent response to UV-visible light.

This study reinforces the utility of non-destructive optical methods as a first step in examining chemical sediments for biosignatures. The petrographic context of fluid inclusions is vital to ensuring the contents of fluid inclusions represent original parent waters and therefore are the same age as the halite. This study also shows that microorganisms can be preserved in fluid inclusions in halite for millions of years and suggests that similar biosignatures may be able to be detected in chemical sediments from Mars.







Today's News

May 14, 2022

Discovered: 150-year-old platypus and echidna specimens that proved some mammals lay eggs

Researchers develop wireless implantable vascular monitoring system

One particle on two paths: Quantum physics is right

CUHK palaeontologist investigates the diet of prehistoric birds to reconstruct past and present ecosystems

Quantum systems and the flight of the bee

Novel supramolecular CRISPR-Cas9 carrier enables more efficient genome editing

The origin of life: A paradigm shift

3D-printing robot enables sustainable construction

Light-emitting electrochemical cells for recyclable lighting

Jellyfish's stinging cells hold clues to the emergence of new cell types

From cavefish to humans: Evolution of metabolism in cavefish may provide insight into treatments for a host of diseases

Ancient microorganisms found in halite may have implications for search for life

Researchers find a trigger for cell suicide; could lead to new skin infection therapies

Multi-tissue cell atlases lead to leap of understanding of immunity and disease

Optical cavities could provide new technological possibilities

AI traffic light system could make traffic jams a distant memory

New tech can double spectral bandwidth in some 5G systems

What we're still learning about how trees grow



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful