Established in 2020 Wednesday, April 17, 2024


Position measurement of a levitated nanoparticle via interference with its mirror image
The ion trap used to levitate a single nanoparticle. Inset: optical interference between the particle and its mirror image. Image courtesy: Quantum Interface Group, University of Innsbruck.



INNSBRUCK.- Levitated nanoparticles are promising tools for sensing ultra-weak forces of biological, chemical or mechanical origin and even for testing the foundations of quantum physics. However, such applications require precise position measurement. Researchers at the Department of Experimental Physics of the University of Innsbruck, Austria, have now demonstrated a new technique that boosts the efficiency with which the position of a sub-micron levitated object is detected.

"Typically, we measure a nanoparticle's position with a technique called optical interferometry, in which part of the light emitted by a nanoparticle is compared with the light from a reference laser," says Lorenzo Dania, a Ph.D. student in Tracy Northup's research group. "A laser beam, however, has a much different shape than the light pattern emitted by a nanoparticle, known as dipole radiation." That shape difference currently limits the measurement precision.

Self-interference method
The new technique demonstrated by Tracy Northup, a professor at the University of Innsbruck, and her team resolves this limitation by replacing the laser beam with the light of the particle reflected by a mirror. The technique builds on a method to track barium ions that has been developed in recent years by Rainer Blatt, also of the University of Innsbruck, and his team. Last year, researchers from the two teams proposed to extend this method to nanoparticles.

Now, using a nanoparticle levitated in an electromagnetic trap, the researchers showed that this method outperformed other state-of-the-art detection techniques. The result opens up new possibilities for using levitated particles as sensors—for example, to measure tiny forces—and for bringing the particles' motion into realms described by quantum mechanics.

The research was published in Physical Review Letters.







Today's News

June 30, 2022

Falling stardust, wobbly jets explain blinking gamma ray bursts

Study highlights the role of genes inherited from mothers in children's genetic diseases

Scientists discover norovirus and other 'stomach viruses' can spread through saliva

These snails died during Prohibition. Researchers just identified the microbes in their guts

UVA astrochemist helps explore the chemistry of outer space

Stanford engineers' optical concentrator could help solar arrays capture more light even on a cloudy day without trackin

Climate change is making plants more vulnerable to disease. new research could help them fight back

In 10 years, CRISPR transformed medicine. Can it now help us deal with climate change?

Position measurement of a levitated nanoparticle via interference with its mirror image

NASA's stratospheric balloon mission gets telescope with giant mirror

From tree to bar - a journey through chocolate and its flavour-making microbes

Swarm of tiny swimming robots could look for life on distant worlds

Robot overcomes uncertainty to retrieve buried objects

Scientists find trigger that sets off metastasis in pancreatic cancer

Fish oil appears to ease post-operative delirium in pre-clinical studies

Shrimps and worms among first animals to recover after largest mass extinction

Fertilizers from composting plants contain large quantities of biodegradable plastics

Study reveals High Mountain Asia hydropower systems are threatened by climate change



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful