Established in 2020 Wednesday, April 17, 2024


Scientists uncover mechanism that shapes centromere distribution
The uneven distribution of centromeres (magenta) in nuclei (green). Image courtesy: © 2022 Sachihiro Matsunaga, The University of Tokyo.



TOKYO.- Since the 1800s, scientists have noted configuration of centromeres, a special chromosomal region that is vital for cell division, in the nucleus. Up until this point, however, the determining mechanisms and the biological significance of centromere distribution were poorly understood.

A team led by researchers from the University of Tokyo and their collaborators recently proposed a two-step regulatory mechanism that shapes centromere distribution. Their findings also suggest that centromere configuration in the nucleus plays a role in maintaining genome integrity. The results were published in Nature Plants.

During the process of cell division, special chromosomal domains called centromeres are pulled to the opposite ends of the cell. After cell division is completed and the cell nucleus is constructed, centromeres spatially distributed in the nucleus. If the distribution of centromeres pulled to the two poles remains unchanged, the cell nucleus will have centromeres grouped at only one side of the nucleus. This uneven distribution of centromeres is called Rabl configuration, after the 19th-century cytologist Carl Rabl. Some species’ nuclei show a dispersed distribution of centromeres instead, which is known as non-Rabl configuration.

“The biological function and molecular mechanism of the Rabl or non-Rabl configuration has been a mystery across the centuries,” said corresponding author Sachihiro Matsunaga, professor at the University of Tokyo’s Graduate School of Frontier Sciences. “We successfully revealed the molecular mechanism to construct the non-Rabl configuration.”

The researchers studied the plant Arabidopsis thaliana, known also as thale cress and a specimen that is known to have non-Rabl configuration, and its mutant form that had a Rabl configuration. Through their work, they found that protein complexes known as condensin II (CII) and protein complexes known as the linker of nucleoskeleton and cotoskeleton (LINC) complex work together to determine centromere distribution during cell division.




“The centromere distribution for non-Rabl configuration is regulated independently by the CII– LINC complex and a nuclear lamina protein known as CROWDED NUCLEI (CRWN),” Matsunaga said.

The first step of the two-step regulatory mechanism of centromere distribution that the researchers uncovered was that the CII-LINC complex mediates the scattering of centromeres from late anaphase to telophase — two phases at the end of cell division. The second step of the process is that the CRWNs stabilize the scattered centromeres on nuclear lamina within the nucleus.

Next, to explore the biological significance, the researchers analyzed the gene expression in A. thaliana and in its Rabl-structure mutant. Because a change in the spatial arrangement of centromeres also changes the spatial arrangement of genes, the researchers expected to find differences in gene expression, but this hypothesis proved to be incorrect. However, when DNA damage stress was applied, the mutant grew organs at a slower rate than the normal plant.

“This suggests that precise control of centromere spatial arrangement is required for organ growth in response to DNA damage stress, and there is no difference in tolerance to DNA damage stress between organisms with the non-Rabl and Rabl,” Matsunaga said. “This suggests that the appropriate spatial arrangement of DNA in the nucleus regardless of Rabl configuration is important for stress response.”

According to Matsunaga, the next steps are to identify the power source that changes the spatial arrangement of specific DNA regions and the mechanism that recognizes specific DNA.

“Such findings will lead to the development of technology for artificially arranging DNA in the cell nucleus in an appropriate spatial arrangement,” he said. “It is expected that this technology will make it possible to create stress-resistant organisms, as well as to impart new properties and functions by altering the spatial arrangement of DNA rather than editing its nucleotide sequence.”







Today's News

August 2, 2022

New Mexico Mammoths among best evidence for early humans in North America

Engineers repurpose 19th-century photography technique to make stretchy, color-changing films

Super-Earth skimming habitable zone of red dwarf

Enzyme, proteins work together to tidy up tail ends of DNA in dividing cells

Safe steps for using 'probiotics' to revive biodiversity

Scientists uncover mechanism that shapes centromere distribution

VegSense makes sense for forest studies

Legacy of ancient Ice Ages shapes how seagrasses respond to environmental threats today

Researchers study historical developments of the periodic system of chemical elements

Rapid loss of smell predicts dementia and smaller brain areas linked to Alzheimer's

Fiddler crab eye view inspires researchers to develop novel artificial vision

Study finds nickelate superconductors are intrinsically magnetic

Next-generation networks with fast changes and increased security

Shining light on how bacteria interact

Iron buildup in brain linked to higher risk for movement disorders

Researchers develop miniature lens for trapping atoms

New optical switch could lead to ultrafast all-optical signal processing

Glioblastoma cells invade the brain as neuronal free riders



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful