Established in 2020 Wednesday, March 27, 2024


Mutations in novel gene found to be responsible for severe liver disease in children
Image of the resected liver from a child with mutations in the FOCAD gene showing striking signs of cirrhosis, requiring liver transplant. Image courtesy: A*STAR’s Genome Institute of Singapore.



SINGAPORE.- New findings have uncovered how essential the FOCAD gene is for maintaining a healthy liver, especially in children. In a research study published in Nature Genetics, scientists have found that children carrying loss-of-function mutations in FOCAD are presented with an early onset, pediatric form of liver cirrhosis that can be life-threatening. The study was carried out by scientists from A*STAR's Genome Institute of Singapore, in collaboration with hospitals and institutes across seven countries (India, U.S., Saudi Arabia, Pakistan, Portugal, Brazil, and France).

Liver disease is becoming a major health concern and is estimated to be the fifth most common cause of death worldwide. A systematic review from the Global Burden of Disease Study identified 1.32 million deaths due to liver cirrhosis in 2017, accounting for more than two percent of the total global deaths. Liver cirrhosis is usually diagnosed late in life, and is traditionally believed to be caused by environmental factors such as poor diet, viral hepatitis or alcohol abuse.

In collaboration with clinicians worldwide, the team combined classical tools such as Mendelian genetics and animal models with modern technology, such as deep sequencing and state-of-the-art gene editing tools to identify that the FOCAD gene is indispensable for maintaining liver health in humans. Mutations in this gene cause an early onset form of liver cirrhosis not documented before. The findings of a single gene, or monogenic, disorder that leads to cirrhosis in childhood establish a strong genetic component for liver disease, which was previously unknown.

In further analysis, they discovered that FOCAD functions as part of a molecular quality control mechanism that assists in translation, a fundamental cellular process by which proteins are made. The main cells of the liver, hepatocytes, were found to rely heavily on this mechanism compared to other cell types. This is the first time that this translation-dependent quality control machinery has been implicated in liver health.

The team also discovered a cytokine, CCL2, that is overproduced in FOCAD deficient patients and may play a key role in the progression of liver cirrhosis. Dr. Ricardo Moreno Traspas, a postdoctoral fellow from the Laboratory of Human Genetics and Therapeutics at GIS, and first author of the study, explained, "FOCAD mutations lead to an overproduction of a number of proteins that may be key drivers in the progression of the disease. One example is the signaling mediator, CCL2, that attracts immune cells and promotes liver inflammation. Drugs that target this, or similar candidates, are potential therapeutic intervention points for cirrhotic patients."

Prof. Bruno Reversade, Senior Group Leader at GIS and corresponding author of the study, commented, "We report the clinical impact of recessive loss-of-function variants in the FOCAD gene, and provide evidence for the importance of the SKI mRNA surveillance pathway for liver homeostasis. The research also brings forth the first animal model of the human disease, as well as in vitro biological systems that are now being used as platforms to identify and validate new anti-fibrotic therapeutic targets."

Prof. Patrick Tan, Executive Director of GIS, said, "The knowledge and tools generated in this study have the potential to aid in the development of innovative therapies for more common forms of liver diseases such as fatty liver disease and liver cancer. Our clinical data will also help clinicians to identify new patients with this syndrome, better understand the cellular and molecular mechanisms of the disease, and hence, provide a more accurate diagnosis, prognosis, and treatment."







Today's News

August 3, 2022

Researchers measure the binding state of light and matter for the first time

Tuberculosis vaccine passes safety test

Webb captures Stellar Gymnastics in the Cartwheel Galaxy

Virginia Tech researcher's 3D model of brain tumor environment could aid personalized treatment

UCLA-led team develops new approach for building quantum computers

Light as a tool for the synthesis of complex molecules

Light-activated technique helps bring cell powerhouses back into balance

Using artificial intelligence to control digital manufacturing

Mutations in novel gene found to be responsible for severe liver disease in children

Scientists reveal method of converting methane gas into liquid methanol

The Bantu expansion took a rainforest route

Tonga eruption blasted unprecedented amount of water into stratosphere

Nanoscale observations simplify how scientists describe earthquake movement

Why it's a problem that pulse oximeters don't work as well on patients of color

Researchers create biosensor by turning spider silk into optical fiber

Analysis of molecular processes in living cells with sub-10 nm spatial resolution

Researchers reveal how an insect-eating plant uses rain energy to power its traps

Suspended sediment reduced by rapid revegetation after Fukushima decontamination



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful