Established in 2020 Monday, August 8, 2022


Researchers create flow-driven rotors at the nanoscale
Artist impression of the flow-driven DNA rotor. Image courtesy: Cees Dekker Lab / SciXel.



DELFT.- Researchers from TU Delft have constructed the smallest flow-driven motors in the world. Inspired by iconic Dutch windmills and biological motor proteins, they created a self-configuring, flow-driven rotor from DNA that converts energy from an electrical or salt gradient into useful mechanical work. The results open new perspectives for engineering active robotics at the nanoscale. The article is now published in Nature Physics.

Elusive construction
Rotary motors have been the powerhouses of human societies for millennia, from the windmills and waterwheels to today's most advanced offshore wind turbines driving the green-energy future. "These rotary motors, driven by a flow, also feature prominently in biological cells. An example is the FoF1-ATP synthase, which produces the fuel that cells need to operate. But the synthetic construction at the nanoscale has thus far remained elusive," says Dr. Xin Shi, postdoc in the lab of prof. Cees Dekker in the department of Bionanoscience at TU Delft.

"Our flow-driven motor is made from DNA material. This structure is docked onto a nanopore, a tiny opening, in a thin membrane. The DNA bundle, only 7 nanometers thick, self-organizes under an electric field into a rotor-like configuration, which subsequently is set into a sustained rotary motion of more than 10 revolutions per second," says Shi, first author of the publication in Nature Physics.

DNA origami
"For seven years, we have been trying to build such rotary nanomotors synthetically from the bottom up. We use a technique called DNA origami, in collaboration with Hendrik Dietz's lab from the Technical University of Munich," adds Cees Dekker, who supervised the research. This technique uses the specific interactions between complementary DNA base pairs to build 2D and 3D nano-objects. The rotors harness energy from a water and ion flow that is established through an applied voltage or even simpler: by having different salt concentrations on the two sides of the membrane. The latter is one of the most abundant energy sources in biology that powers various critical processes, like cellular fuel synthesis and cell propulsion.




Solving a puzzle
This achievement is a milestone, as it is the first-ever experimental realization of flow-driven active rotors at the nanoscale. When the researchers first observed the rotations, however, they were puzzled: how could such simple DNA rods exhibit these nice, sustained rotations? The puzzle was solved in discussions with theorist Ramin Golestanian and his team at the Max Planck Institute for Dynamics and Self-Organization in Göttingen. They modeled the system and revealed the fascinating self-organization process where the bundles spontaneously deform into chiral rotors that then couple to the flow from the nanopores.

From simplicity to rational design
"This self-organization process truly shows the beauty of simplicity," says Shi. But the importance of this work does not stop at this simple rotor itself. The technique and physical mechanism behind it establish an entirely new direction of building synthetic nanomotors: flow-driven nanoturbines, which is, a surprisingly unexplored field by scientists and engineers. "You would be surprised how little we knew and achieved on building such flow-driven nanoturbines, especially given the millennia-old knowledge we have on building their macroscale counterparts, and the critical roles they fulfill in the life itself," says Shi.

In a further step (which is in preprint) the group has used the knowledge they learnt from building this self-organized rotor to make a next important advance: the first rationally designed nanoscale turbine. "Like how science and technologies always work, we started from a simple pinwheel, now are able to recreate the beautiful Dutch windmills, but this time with a size of only 25 nm, the size of one single protein in your body," says Shi, "and we demonstrated their ability to carry loads."

"And now, the rotation direction was set by the designed chirality," Dekker adds. "Left-handed turbines rotated clockwise; right-handed ones rotated anticlockwise."

Steam engine
Next, to better understanding and mimicking motor proteins such as FoF1-ATP synthase, the results open new perspectives for engineering active robotics at the nanoscale. Shi: "What we have demonstrated here is a nanoscale engine that is truly able to transduce energy and do work. You could draw an analogy with the first invention of the steam engine in the 18th century. Who could have predicted then how it fundamentally changed our societies? We might be in a similar phase now with these molecular nanomotors. The potential is unlimited, but there is still a lot of work to do."







Today's News

August 6, 2022

International researchers confirm museum shrunken head as human remains

Bacteria-busting proteins offer potential for smarter drugs

Researchers create flow-driven rotors at the nanoscale

Similarity between schizophrenia and dementia

Team troubleshoots asteroid-bound Lucy spacecraft across millions of miles

How microglia contribute to Alzheimer's disease

As reflective satellites fill the skies, UArizona students are making sure astronomers can adapt

Mitochondrial DNA mutations linked to heart disease risk

Wide view of early universe hints at galaxy among earliest ever detected

CUHK's study sees a rising trend of multiple myeloma incidence, particularly in older males from high-income countries

New study reveals that climate change will severely impact bird species by 2080

Engineering the microbiome to potentially cure disease

Baboons borrowed a third of their genes from a closely related species

New Stanford animation simulator focuses on finding interesting outcomes

Water can't touch this sanded, powdered surface

Giant viruses build a cell nucleus surprisingly like our own

New method enables efficient sample preparation for single-cell proteomics

A new approach for detecting tumor heterogeneity to assess breast cancer patient outcomes



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful