Established in 2020 Wednesday, April 17, 2024


Fossil discovery in storeroom cupboard shifts origin of modern lizard back 35 million years
CT scan showing the left side of the lizard head beside the fossil showing the right-hand side. Image courtesy: David Whiteside, Sophie Chambi-Trowell, Mike Benton and Natural History Museum UK.



BRISTOL.- A specimen retrieved from a cupboard in the Natural History Museum in London has shown that modern lizards originated in the Late Triassic and not the Middle Jurassic as previously thought.

This fossilized relative of living lizards such as monitor lizards, gila monsters and slow worms was identified in a stored museum collection from the 1950s, including specimens from a quarry near Tortworth in Gloucestershire, South West England. The technology didn't exist then to expose its contemporary features.

As a modern-type lizard, the new fossil impacts all estimates of the origin of lizards and snakes, together called the Squamata, and affects assumptions about their rates of evolution, and even the key trigger for the origin of the group.

The team, led by Dr. David Whiteside of Bristol's School of Earth Sciences, have named their incredible discovery Cryptovaranoides microlanius meaning "small butcher" in tribute to its jaws that were filled with sharp-edged slicing teeth.

Dr. Whiteside explained, "I first spotted the specimen in a cupboard full of Clevosaurus fossils in the storerooms of the Natural History Museum in London where I am a Scientific Associate. This was a common enough fossil reptile, a close relative of the New Zealand Tuatara that is the only survivor of the group, the Rhynchocephalia, that split from the squamates over 240 million years ago.

"Our specimen was simply labeled 'Clevosaurus and one other reptile.' As we continued to investigate the specimen, we became more and more convinced that it was actually more closely related to modern day lizards than the Tuatara group.

"We made X-ray scans of the fossils at the University, and this enabled us to reconstruct the fossil in three dimensions, and to see all the tiny bones that were hidden inside the rock."

Cryptovaranoides is clearly a squamate as it differs from the Rhynchocephalia in the braincase, in the neck vertebrae, in the shoulder region, in the presence of a median upper tooth in the front of the mouth, the way the teeth are set on a shelf in the jaws (rather than fused to the crest of the jaws) and in the skull architecture such as the lack of a lower temporal bar.

There is only one major primitive feature not found in modern squamates, an opening on one side of the end of the upper arm bone, the humerus, where an artery and nerve pass through. Cryptovaranoides does have some other, apparently primitive characters such as a few rows of teeth on the bones of the roof of the mouth, but experts have observed the same in the living European Glass lizard and many snakes such as Boas and Pythons have multiple rows of large teeth in the same area. Despite this, it is advanced like most living lizards in its braincase and the bone connections in the skull suggest that it was flexible.

"In terms of significance, our fossil shifts the origin and diversification of squamates back from the Middle Jurassic to the Late Triassic," says co-author Professor Mike Benton. "This was a time of major restructuring of ecosystems on land, with origins of new plant groups, especially modern-type conifers, as well as new kinds of insects, and some of the first of modern groups such as turtles, crocodilians, dinosaurs, and mammals.

"Adding the oldest modern squamates then completes the picture. It seems these new plants and animals came on the scene as part of a major rebuilding of life on Earth after the end-Permian mass extinction 252 million years ago, and especially the Carnian Pluvial Episode, 232 million years ago when climates fluctuated between wet and dry and caused great perturbation to life."

Ph.D. research student Sofia Chambi-Trowell commented, "The name of the new animal, Cryptovaranoides microlanius, reflects the hidden nature of the beast in a drawer but also in its likely lifestyle, living in cracks in the limestone on small islands that existed around Bristol at the time. The species name, meaning 'small butcher,' refers to its jaws that were filled with sharp-edged slicing teeth and it would have preyed on arthropods and small vertebrates."

Dr. Whiteside concluded, "This is a very special fossil and likely to become one of the most important found in the last few decades. It is fortunate to be held in a National Collection, in this case the Natural History Museum, London. We would like to thank the late Pamela L. Robinson who recovered the fossils from the quarry and did a lot of preparation work on the type specimen and associated bones. It was such a pity she did not have access to CT scanning technology to help her observe all the detail of the specimen."







Today's News

December 3, 2022

Researchers generate lab-grown human tissue model for food tube cancer

Brain cells use a telephone trick to report what they see

Physicists observe wormhole dynamics using a quantum computer

Going back to basics yields a printable, transparent plastic that's highly conductive

A new self-powered ingestible sensor opens new avenues for gut research

Autism-linked gene shapes nerve connections

New theory explains magnetic trends in high-temperature superconductors

Fossil discovery in storeroom cupboard shifts origin of modern lizard back 35 million years

Photonics chip allows light amplification

Do women age differently from men?

New process allows 3-D printing of microscale metallic parts

How touch dampens the brain's response to painful stimuli

Study IDs genes that can help fruit adapt to drought

Penn Medicine study gives peek of how ketamine acts as 'switch' in the brain

Iron for energy storage

Flowers show their true colors

Webb Space Telescope, Keck team up to study Saturn's moon Titan

Graphene heads to the moon



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful