Established in 2020 Wednesday, April 17, 2024


How a 3 cm glass sphere could help scientists understand space weather
UCLA researchers effectively reproduced the type of gravity that exists on or near stars and other planets inside of a glass sphere 3 centimeters in diameter. Image courtesy: John Koulakis/UCLA.



LOS ANGELES, CA.- Solar flares and other types of space weather can wreak havoc with spaceflight and with telecommunications and other types of satellites orbiting the Earth. But, to date, scientists’ ability to research ways to overcome that challenge has been severely limited. That’s because experiments they conduct in laboratories here on Earth are affected by gravity in ways that are so different from conditions in space.

But a new study by UCLA physicists could, at last, help conquer that issue — which could be a big step toward safeguarding humans (and equipment) during space expeditions, and to ensuring the proper functioning of satellites. The paper is published in Physical Review Letters.

The UCLA researchers effectively reproduced the type of gravity that exists on or near stars and other planets inside of a glass sphere measuring 3 centimeters in diameter (about 1.2 inches). To do so, they used sound waves to create a spherical gravitational field and generate plasma convection — a process in which gas cools as it nears the surface of a body and then reheats and rises again as it nears the core — creating a fluid current that in turn generates a magnetic current.

The achievement could help scientists overcome the limiting role of gravity in experiments that are intended to model convection that occurs in stars and other planets.

“People were so interested in trying to model spherical convection with laboratory experiments that they actually put an experiment in the space shuttle because they couldn’t get a strong enough central force field on the ground,” said Seth Putterman, a UCLA physics professor and the study’s senior author. “What we showed is that our system of microwave-generated sound produced gravity so strong that Earth’s gravity wasn’t a factor. We don’t need to go into space to do these experiments anymore.”




UCLA researchers used microwaves to heat sulfur gas to 5,000 degrees Fahrenheit inside the glass sphere. The sound waves inside the ball acted like gravity, constraining movement of the hot, weakly ionized gas, known as plasma, into patterns that resemble the currents of plasma in stars.

“Sound fields act like gravity, at least when it comes to driving convection in gas,” said John Koulakis, a UCLA project scientist and the study’s first author. “With the use of microwave-generated sound in a spherical flask of hot plasma, we achieved a gravity field that is 1,000 times stronger than Earth’s gravity.”

On Earth’s surface, hot gas rises because gravity holds denser, colder gas closer to the planet’s center.

Indeed, the researchers found that hot, bright gas near the outer half of the sphere also moved outward toward the walls of the sphere. The strong, sustained gravity generated turbulence that resembled that seen near the Sun’s surface. In the inner half of the sphere, the acoustic gravity changed direction and pointed outward, which causes hot gas to sink to the center. In the experiment, acoustic gravity naturally held the hottest plasma at the center of the sphere, where it also occurs in stars.

The ability to control and manipulate plasma in ways that mirror solar and planetary convection will help researchers understand and predict how solar weather affects spacecraft and satellite communications systems. Last year, for example, a solar storm knocked out 40 SpaceX satellites. The phenomenon has also been problematic for military technology: the formation of turbulent plasma around hypersonic missiles, for example, can interfere with weapons systems communications.

The study was funded in part by the Defense Department’s Defense Advanced Research Projects Agency, or DARPA, and by the Air Force Office of Scientific Research.

Putterman and his colleagues are now scaling up the experiment in order to better replicate conditions they’re studying and so that they can observe the phenomenon in more detail and for longer periods of time.







Today's News

January 24, 2023

Twisting up atoms through space and time

New enzyme could mean better drugs

How a 3 cm glass sphere could help scientists understand space weather

Scientists unveil least costly carbon capture system to date

Soft robots harness viscous fluids for complex motions

Tiny ion is crucial for HIV replication, say UChicago chemists

A rainbow of force-activated pigments

Clinical trial delivers chemotherapy to pediatric brain tumours using MRI-guided focused ultrasound

Origins of pleasurable touch traced from skin to brain in mice

New catalyst design could make better use of captured carbon, researchers say

Camera-trap study provides photographic evidence of pumas' ecological impact

'Rubble pile' asteroids nearly impossible to destroy, study suggests

Researcher takes another step toward discovering how a brain molecule could halt MS

Host-cell factors involved in COVID-19 infections may augur improved treatments

New tool uses ultrasound 'tornado' to break down blood clots

NASA measures underground water flowing from Sierra to Central Valley

Webb unveils dark side of pre-stellar ice chemistry

A new model for dark matter



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful