Established in 2020 Wednesday, April 17, 2024


A new catalyst that transforms carbon dioxide into added-value chemical products
Graphical abstract. Image courtesy: Chem Catalysis (2022). DOI: 10.1016/j.checat.2022.11.021.



CASTELLÓN.- Global warming is an increasingly worrying problem. Although the greenhouse effect is a necessary process to maintain living conditions on Earth, our current societies are increasing the emission of greenhouse gases into the atmosphere and increasing its temperature by retaining more heat than necessary. Nature is trying to counteract this situation: plants are able to capture energy from sunlight and convert CO2 into chemical energy and organic matter.

Inspired by this natural process, the Supramolecular and Sustainable Chemistry Group of the Department of Inorganic and Organic Chemistry at the Universitat Jaume I in Castelló has developed a catalyst that can transform CO2 into high added-value chemical products, especially cyclic carbonates. The technology, validated at an experimental level in the laboratory environment, seeks development and adaptation in specific applications through specific agreements and licenses with companies.

This invention, framed in the field of synthetic chemistry and also environmental chemistry, would be applicable in industries that generate waste flows with a high carbon dioxide (CO2) content and in industries in the fine chemicals or pharmaceutical sector that use chiral cyclic carbonates as intermediates. The new pseudopeptide catalytic system allows the production of cyclic carbonates from dilute CO2 under mild pressure and temperature conditions and in an enantioselective way.

Thus, this catalyst can contribute to the development of circular and sustainable economy, in which a waste or residue from one industry becomes the raw material for another. This technology enables the production of high added value products such as cyclic carbonates, which are important industrial chemicals with diverse applications: environmentally friendly solvents, lithium-ion batteries, paints and coatings, resins, precursors for polymeric materials and polymer processing in fine chemistry.

Some of their technical advantages are the fact that these chiral bimetallic catalysts do not require the presence of a co-catalyst; they are able to act under mild pressure and temperature conditions and can be biodegradable due to their pseudopeptide structure. These characteristics allow cost savings, reduce the waste generated in catalysis, reuse residual energy (circular economy) and obtain chiral products with high added value.

The work is published in the journal Chem Catalysis.







Today's News

February 4, 2023

First solid scientific evidence that Vikings brought animals to Britain

New material makes recycling a wide range of batteries simple and economical

New research computes first step toward predicting lifespan of electric space propulsion systems

Measuring changes in brain tissue oxygenation for personalized cancer radiotherapy

Liquid windows: Energy-saving inspiration from squid skin

A new catalyst that transforms carbon dioxide into added-value chemical products

Microbes are 'active engineers' in Earth's rock-to-life cycle

Researchers develop elastic material that is impervious to gases and liquids

An illuminated water droplet creates an 'optical atom'

Recreating the natural light-harvesting nanorings in photosynthetic bacteria

Reducing their natural signals: How sneaky germs hide from ants

Creating 'ghostly mirrors' for high-power lasers

Soil tainted by air pollution expels carbon

Scientists report on a quasiparticle that can transfer heat under electrical control

Digital revolution inspires new research direction in ecosystem structural diversity

Will revitalizing old blood slow aging?

Silver nanoparticles show promise in fighting antibiotic-resistant bacteria

New software enables automated analysis of biomedical image data without programming knowledge



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful