Established in 2020 Sunday, April 2, 2023

Reducing their natural signals: How sneaky germs hide from ants
Unlike humans, ants react immediately to pathogen contamination and not only to the later-developing symptoms of a disease. Nestmates efficiently groom off infectious particles from colony members. Image courtesy: Sina Metzler, Roland Ferrigato/ISTA.

KLOSTERNEUBURG.- Pathogens are disease-causing organisms. By natural selection, they develop evasion mechanisms to outsmart the host's immune system and to get the upper hand. One way to support the immune system and fight back is medical intervention. However, this can lead to unwanted adaptions of pathogens as seen in antibiotic-resistant bacteria.

Another strategy is social intervention. Some social groups like ants are trying to fight infection with "social immunity," the collective hygiene and health care measures to avoid spread throughout the community. If and how pathogens can respond to this kind of group behavior, is still unknown.

The latest study by Professor Sylvia Cremer and her research team at the Institute of Science and Technology Austria shows the extraordinary effects of these kinds of host-parasite interactions. Together, with chemical ecologists at the University of Würzburg in Germany, the scientists took a close look at social ants, to see how pathogenic fungi respond to their hosts' social care intervention during infection. The results reveal that fungi reduce their chemical detection signals to outplay social immunity. The study was published in Nature Ecology & Evolution.

More spores but less grooming
"Fungi infect the ants from the body surface and grow inside, but nestmates groom off many of the spores before they can even cause internal infection," explains Barbara Milutinović, one of the lead authors, former postdoc in the Cremer Group and now Marie Curie Sklodowska Fellow at Ruđer Bošković Institute in Croatia.

The scientists set up an experiment where Argentine ants (Linepithema humile) were infected with pathogenic Metarhizium fungi either in the absence or presence of caregiving colony members. "We found that the fungi fundamentally changed in response to the ant workers' caregiving," Milutinović continues. Over ten infection cycles, fungi that experienced grooming nestmate ants boosted their spore production compared to fungi accompanied by only individual ants.

"Producing more spores will help the fungus counteract the spore-removal by helping nestmates. Yet, we were surprised to see that the ants showed less grooming against the spores," Sylvia Cremer adds. "This suggests, that the spores have become more difficult to detect by the ants."

Fungi lose their typical chemical profile
To check why ant workers had difficulties sensing fungi and to analyze possible fungal detection cues, the scientists teamed up with a chemical ecologist from the University of Würzburg. Local Professor Thomas Schmitt explains, "The fungi that adapted to social hosts were perceived less strongly due to a strong reduction of a fungi-specific compound called ergosterol."

Ergosterol is an essential membrane compound, that all fungi have. By exposing the ants to pure fungal ergosterol or the slightly different non-fungal vertebrate equivalent, the researchers showed that only the fungal compound induced intense grooming. Milutinović says, "This demonstrates that fungal pathogens react to the presence of caregiving ants by reducing their characteristic fungal signals. They are no longer recognized as a disease threat and can escape the social immunity of the colony."

The findings highlight the impact that social hosts have on their pathogens by group behaviors. "It's fascinating how collective hygiene measures trigger evasion strategies in the pathogen. It would be interesting to see how the ant colony will react in turn. Maybe they become more sensitive in detecting lower and lower fungal cues," Cremer concludes.

Today's News

February 4, 2023

First solid scientific evidence that Vikings brought animals to Britain

New material makes recycling a wide range of batteries simple and economical

New research computes first step toward predicting lifespan of electric space propulsion systems

Measuring changes in brain tissue oxygenation for personalized cancer radiotherapy

Liquid windows: Energy-saving inspiration from squid skin

A new catalyst that transforms carbon dioxide into added-value chemical products

Microbes are 'active engineers' in Earth's rock-to-life cycle

Researchers develop elastic material that is impervious to gases and liquids

An illuminated water droplet creates an 'optical atom'

Recreating the natural light-harvesting nanorings in photosynthetic bacteria

Reducing their natural signals: How sneaky germs hide from ants

Creating 'ghostly mirrors' for high-power lasers

Soil tainted by air pollution expels carbon

Scientists report on a quasiparticle that can transfer heat under electrical control

Digital revolution inspires new research direction in ecosystem structural diversity

Will revitalizing old blood slow aging?

Silver nanoparticles show promise in fighting antibiotic-resistant bacteria

New software enables automated analysis of biomedical image data without programming knowledge


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez

Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful