Established in 2020 Wednesday, April 10, 2024


First completely roll-to-roll printable perovskite solar cell
Dr David Beynon (Left) and Dr Ershad Parvazian (Right) holding a sample of the new fully roll-to-roll (R2R) coated device. Image courtesy: Swansea University.



SWANSEA.- Swansea University has established a low-cost and scalable carbon ink formulation capable of unlocking, for the first time, the potential for perovskite solar cells to be manufactured at scale.

Using slot die coating in a roll-to-roll (R2R) process, academics from the SPECIFIC Innovation and Knowledge Center at Swansea University have established a way to create "fully printable" perovskite photovoltaics (PV), a term often used but, until now, incorrect.

The team searched for an alternative to the gold electrode that is typically applied using an expensive and slow evaporation process after the device has been printed.

Dr. David Beynon, senior research officer at SPECIFIC, said, "The key was identifying the right solvent mix, one which dries as a film without dissolving the underlying layer.

"X-ray diffraction analysis showed carbon electrode ink is capable of this when formulated with an orthogonal solvent system. This innovative layer can be applied continuously and compatibly with the underlying layers at a low temperature and high speed."

The research has been published in Advanced Materials.

Photovoltaic research lead, Professor Trystan Watson, said, "Perovskite solar cells show great promise in the drive towards cleaner, greener energy. The ability to produce a fully working device entirely in-line makes high-volume manufacturing easier and more economical and is a big step towards their commercialization. It unlocks the idea of manufacturing process where a solar ink is added one end and a solar cell emerges from the other."

The devices with carbon electrodes provided a similar photovoltaic performance to the conventional evaporated gold electrodes, as part of a small-scale device on a rigid glass substrate, with power conversion efficiencies (PCE) of 13%–14% and the additional benefits of outperforming at higher temperatures and having better long-term stability.

The new fully R2R coated device, which was printed onto a 20-meter-long flexible substrate, produced a stabilized power conversion efficiency of 10.8%.

Dr. Ershad Parvazian, postdoctoral researcher at SPECIFIC, said, "The most important part of this project was coating the carbon entirely, R2R, a new process of working with perovskite photovoltaics, which helps to scale up easier.

"For a few years now, the efficiency of these devices has been increasing, with the expectation that they could be fully printed. This work has proved that."

This new generation of solar cell has significantly benefited from the unique collaborative structure of its creators, a team of Swansea University chemists, materials scientists, and engineers all on-site.

In just four years, this innovative method for PV has been designed and made, assessed and analyzed in detail, adapted and improved, making the possibility of printing and installing millions of meters of solar cells across the globe closer than ever.

Professor Watson said, "The next challenge in printed PV for us at Swansea University, is to prove to people that these work.

"In order to achieve this, we need to start making something that really looks like a solar panel. We can then install them on buildings and understand how close we are to delivering on the promise of U.K. based manufacturing of green renewables."







Today's News

March 18, 2023

Longest ever necked dinosaur discovered in China

Study shows new way to spur brain immune cells to clear toxic waste linked to Alzheimer's disease

Controlling the degree of twist in nanostructured particles for the first time

Physicists track sequential 'melting' of upsilons

Researchers create virus-resistant, safely restrained E. coli for medical, industrial applications

Pinpoint simulations provide perspective on universe structure

Mirror-imaging in molecules can modify neuron signaling

First completely roll-to-roll printable perovskite solar cell

How genome doubling helps cancer develop

Resilient bug-sized robots keep flying even after wing damage

Hummingbirds use torpor in varying ways to survive cold temps, finds study

Scientists offer evidence that Venus is volcanically active

Estrogen possible risk factor in disturbed heart rhythm

Building an understanding of quantum turbulence from the ground up

Scientists develop new lithium niobate laser technology

Astronomers observe scorching gas cloud surrounding a galactic protocluster

Researchers report method to determine the absolute dose for new radiotherapy cancer treatment technique

Neolithic ceramics reveal dairy processing from milk of multiple species



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful