Established in 2020 Wednesday, April 17, 2024


Team develops 2D ultrasound-responsive antibacterial nano-sheets to effectively address bone tissue infection
Mechanism and antibacterial performance of 2D catalytic planar defects-mediated SDT. Image courtesy: Advanced Materials (2022). DOI: 10.1002/adma.202208681.



HONG KONG.- A research team led by Professor Kelvin Yeung Wai-kwok from the Department of Orthopaedics and Traumatology, School of Clinical Medicine, LKS Faculty of Medicine, the University of Hong Kong (HKUMed) has invented a non-invasive and non-antibiotics technology to effectively reduce methicillin-resistant Staphylococcus aureus (MRSA) infection in bony tissue.

The novel antibacterial nano-sheets can release a substantial amount of reactive oxygen species (ROS) subject to ultrasound stimulation. With the engulfment of neutrophil membrane (NM), the nano-sheets are able to actively capture the MRSA bacteria deeply seated in bony tissue and effectively eliminate 99.72% ± 0.03%. The research has been published in Advanced Materials.

Bone infection (osteomyelitis) is an infection in bone or bone marrow caused by bacteria, fungi, or other microorganisms. The common causative pathogenic organism is MRSA. Severe infections can put patients at the risk of amputation, or even induce life-threatening sepsis. In clinical practice, the treatment of bone tissue infection typically involves antibiotics and surgical debridement to remove the infected bone or tissue.

However, excessive use of antibiotics not only compromises the host's innate immune function, but may also inevitably induce the emergence of drug-resistant pathogens. Recently, phototherapy (including photodynamic and photothermal therapy) has been applied as an antibiotic-free strategy to tackle bacterial infections. However, conventional phototherapy is unable to address deep tissue infection in bones due to its limited penetration power.

The researchers therefore pursued an alternative antibiotic-free strategy harnessing the penetration power of ultrasound in human tissues.

The HKUMed research team invented a new two-dimensional (2D) sonosensitizer, Ti3C2-SD(Ti3+) nano-sheets. A conventional sonosensitizer arranged in zero-dimension yields limited efficiency in ROS generation.

The innovative 2D sonosensitizer, containing an abundance of planar catalytic sites, can effectively generate a substantial amount of ROS when it is triggered by an ultrasound signal. After being covered with a neutrophil membrane (NM), the NM-Ti3C2-SD(Ti3+) nano-sheets (NM-nano-sheets) can actively track down the MRSA bacteria in bony tissue subject to ultrasound stimulation.

In an animal model, the novel nano-sheets have eliminated the MRSA bacteria in bone in more than 99.72% of cases, whereas the antibiotics therapy (Vanco) is ineffective. Furthermore, the NM-nano-sheets can also alleviate tissue inflammation and assist bone repair once bony tissue infection has been controlled. In addition, the NM-coated nano-sheets do not present any acute bio-safety issues.

Professor Kelvin Yeung Wai-kwok remarked, "Our design has achieved a qualitative leap in which the ROS catalytic site in sonosensitizer has transformed from zero-dimensional to two-dimensional. This invention can remarkably increase the production of bactericide (ROS). We may also consider applying this invention to the post-operation bacterial infection commonly seen in bone cancer patients or the patients with cystitis and peritonitis in the future."







Today's News

March 26, 2023

New wood-based technology removes 80% of dye pollutants in wastewater

How Antarctica's tiny non-ice-dwelling species survived the ice age

Was Venus ever habitable? New UChicago study casts doubt

Virginia Tech geoscientists shed a light on life's evolution 800 million years ago

Deceptive daisy's ability to create fake flies explained

Artificial intelligence predicts genetics of cancerous brain tumors in under 90 seconds

CUHK develops an efficient approach to estimate the risk of heart disease in people living with HIV

Robotic system offers hidden window into collective bee behavior

The 'Stonehenge calendar' shown to be a modern construct

Climate change threatens global fisheries

Habitat will dictate whether ground beetles win or lose against climate change, finds study

Doubling a qubit's life, researchers prove a key theory of quantum physics

Wastewater could be the key to tracking more viruses than just COVID-19

Team develops 2D ultrasound-responsive antibacterial nano-sheets to effectively address bone tissue infection

Artificial intelligence discovers secret equation for 'weighing' galaxy clusters

A portable instrument to measure indoor air pollution

New study uncovers unprecedented declines in iconic kelp forests along Monterey Peninsula

Can insights from the soapbark tree change the way we make vaccines?



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful