Established in 2020 Wednesday, March 27, 2024


Giant volcanic 'chain' spills secrets on inner workings of volcanoes
Sawn Rock—Nandewar Volcanic Range, NSW, one of the studied volcanoes from the east Australian volcanic chain. Image courtesy: Dr. Tracey Crossingham.



BRISBANE.- Volcanic relics scattered throughout the Australian landscape are a map of the northward movement of the continent over a "hotspot" inside the Earth, during the last 35 million years.

University of Queensland researchers Dr. Tamini Tapu, Associate Professor Teresa Ubide and Professor Paulo Vasconcelos discovered how these relics reveal the inner structure of the Australian volcanoes became increasingly complex as the hotspot's magma output decreased. The work is published in the journal Nature Geoscience.

Dr. Al-Tamini Tapu, whose Ph.D. project at UQ's School of Earth and Environmental Sciences formed the basis of this study, said the hotspot was incredibly strong in its early stages, generating some of eastern Australia's most beloved natural attractions.

"These large volcanoes were active for up to seven million years," Dr. Tapu said.

"The volcanoes formed as the continent moved over a stationary hotspot inside the planet, melting the land above it so magma could ooze upward.

"This left a treasure trove of volcanic landmarks in its wake, forming the longest chain of continental 'hotspot' volcanoes on Earth—along Australia's eastern side.

"As you cast your eye along this massive chain, you'll find Queensland volcanoes such as the Glass House Mountains and Tweed Volcano, which are 'shield volcanoes' visited by countless locals and tourists every year."

Enormous, long-lived lava outpourings in Tweed volcano may have weakened the hotspot, and caused the younger volcanoes to the south to become smaller and shorter-lived.

"This indicates the changes caused as the continent shifted over the weakening hotspot," Dr. Tapu said.




Associate Professor Teresa Ubide said that, as the magma production waned, the volcanoes became internally more complicated, erupting lavas full of complex crystals.

"These little heroes hold the secrets of how the volcano works inside and tell us that the late Australian volcanoes were full of magma pockets, or reservoirs," Dr. Ubide said.

"As these cooled down and became more viscous, it became more difficult to generate eruptions, which may have been more explosive.

"We found that the arrival of new, hotter, and gas-rich magma acts like a shaken bottle of fizzy drink, causing a build-up of pressure in the magma, and, eventually, an eruption."

Dr. Ubide said Australia's extinct "hotspot volcanoes" provide a unique laboratory for researchers to investigate processes leading to volcanic eruptions across the globe.

"The effect of erosion over tens of millions of years allows us to access complete sequences of lava that can be difficult to access in more recent volcanoes," she said.

"It then makes it possible to reconstruct the inner structure of the volcanoes, sort of like opening a doll's house, which gives us a much better understanding of hotspot activity globally.

"This is particularly important, given there are many active hotspots on Earth, including in the Pacific and Atlantic oceans, and in other continents, such as the United States' Yellowstone volcano.

"Volcanoes in these areas produce large volumes of lava and have an important role in the evolution of our planet and atmosphere—so having a real-world 'doll's house' to play around in and observe variations with time and magma supply is very helpful.

"Our study shows the fundamental role of the strength of heat anomalies inside the Earth in the evolution of our planet and its landscape over millions of years.

"Reconstruction of these extinct volcanoes can help to better understand active continental hotspot volcanoes globally."







Today's News

March 27, 2023

UChicago scientists discover easy way to make atomically-thin metal layers for new technology

'Smart' bandages monitor wounds and provide targeted treatment

Astronomers discover helium-burning white dwarf

Researchers detail groundbreaking Angelman syndrome development

New experiment translates quantum information between technologies in an important step for the quantum internet

Important step towards accurate use of stem cell-based disease models

Global natural history initiative builds database to address 21st century challenges

"Bizarre" Yoda acorn worm makes Top 10 Marine Species List

An experimental method for examining ultra-light dark matter using millimeter-wave sensing

'Deep proteome' project provides atlas for human complexity

Scientists and maple syrup producers develop a rapid test that analyzes the quality of maple sap

Graphene grows-physicists find a way to visualize it

Finding new ways to diagnose childhood brain tumours

Giant volcanic 'chain' spills secrets on inner workings of volcanoes

Visualizing spatial distribution of electric properties at microscales with liquid crystal droplets

A novel combination therapy for treating vancomycin-resistant bacterial infections

New study explores the 'tsunami' in Venus's clouds

Using high-precision quantum chemistry to study super-efficient energy transfer in photosynthesis



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful