Established in 2020 Wednesday, April 10, 2024


Researchers shed further light onto zinc homeostasis in cells
A fluorescence image of the ER and Golgi apparatus. Image courtesy: Tohoku University.



SENDAI.- A research group has unearthed how zinc transporter complexes regulate zinc ion (Zn2+) concentrations in different areas of the Golgi apparatus and revealed that this mechanism finely tunes the chaperone protein ERp44.

The findings, which were reported in the journal Nature Communications on May 9, 2023, reveal the crucial chemical and cellular biological mechanism at play behind zinc homeostasis, something necessary for avoiding fatal diseases such as diabetes, cancers, growth failures, and immunodeficiency.

As a trace element, zinc is essential for our health. Zn2+ are vital for enzyme catalysis, protein folding, DNA binding, and regulating gene expression, with nearly 10% of human proteome binding Zn2+ for their structural maturation and function.

Secretory proteins like hormones, immunoglobulins, and blood clotting factors are synthesized and folded in the endoplasmic reticulum (ER), a complex membrane network of tubules. Subsequently, they are transported to and matured in the Golgi apparatus, the organelle composed of multiple flattened sacs called cisternae, which sorts and processes proteins before directing them to a specific destination. Chaperone proteins are vital for maintaining protein homeostasis and preventing the formation of misfolded or aggregated proteins in these organelles.

The group's previous research demonstrated that Zn2+ in the Golgi apparatus plays an essential part in protein quality control in the early secretory pathway comprising the ER and Golgi. This system is mediated by the ER-Golgi cycling chaperone protein ERp44.

In the Golgi apparatus, there exists three ZnT complexes: ZnT4, Znt5/6, and ZnT7. Yet, until now, mechanisms of how Zn2+ homeostasis is maintained in the Golgi apparatus has remained unclear.

"Using chemical biology and cell biology approaches together, we revealed that these ZnT complexes regulate the Zn2+ concentrations in the different Golgi compartments, namely cis, medial, and trans-Golgi cisternae," says Kenji Inaba, a corresponding author of the study and professor at Tohoku University's Institute of Multidisciplinary Research for Advanced Materials Sciences. "We also further elucidated the intracellular transport, localization, and function of ERp44 controlled by ZnT complexes."

ERp44 captures immature secretory proteins at the Golgi apparatus to prevent their abnormal secretion. Previous studies have shown that mice with the expression of ERp44 suppressed suffer from heart failure and hypotension.

Additionally, many secretory zinc enzymes are related to various diseases, including metastasis of cancer cells and hypophosphatasia. These enzymes depend on the Golgi-resident ZnT complexes to acquire Zn2+ for enzymatic activity. Male mice with ZnT5 suppressed have experienced death caused by arrhythmias, so there is possible relevance of Zn2+ homeostasis to cardiovascular disease.

"Our findings will help us understand the mechanism by which disruptions of Zn2+ homeostasis in the early secretory pathway leads to the development of pathological conditions," adds Inaba.

The group are hopeful that the strategies employed in their study can paint a bigger picture of the mechanisms underlying the maintenance of intracellular Zn2+ homeostasis, recommending future studies that can measure Zn2+ in other organelles such as the mitochondria and nucleus.







Today's News

May 30, 2023

CSI Singapore researchers uncover potential novel therapeutic targets against natural killer/T-cell lymphoma

Super low-cost smartphone attachment brings blood pressure monitoring to your fingertips

Pan-cancer T cell atlas reveals new details of tumor microenvironment

Researchers achieve record 19.31% efficiency with organic solar cells

New-look infrared lens shines a light on future technology and manufacturing

Researchers shed further light onto zinc homeostasis in cells

Juice's final deployments complete: Ready for study of Jupiter

Bacteria are vital for the diversity and survival of insects

Examining the role of Hadley cells in ongoing climate change

New DNA testing technology shows majority of wild dingoes are pure, not hybrids

How forest fragmentation affects birds depends on their wings

Microorganisms are key to storing carbon in soils, shows new study

Teenage orcas could be roughhousing with boats off the coast of Spain

Mapping the conflict between farming and biodiversity

T helper cells determine the course of disease in viral infections such as COVID-19: Study



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful