Established in 2020 Wednesday, June 12, 2024


Team uses gold nanowires to develop wearable sensor that measures two bio-signals
Research image. Image courtesy: POSTECH.



POHANG.- A research team led by Professor Sei Kwang Hahn and Dr. Tae Yeon Kim from the Department of Materials Science and Engineering at Pohang University of Science and Technology (POSTECH) used gold nanowires to develop an integrated wearable sensor device that effectively measures and processes two bio-signals simultaneously. Their research findings were featured in Advanced Materials.

Wearable devices, available in various forms like attachments and patches, play a pivotal role in detecting physical, chemical, and electrophysiological signals for disease diagnosis and management. Recent strides in research focus on devising wearables capable of measuring multiple bio-signals concurrently.

However, a major challenge has been the disparate materials needed for each signal measurement, leading to interface damage, complex fabrication, and reduced device stability. Additionally, these varied signal analyses require further signal processing systems and algorithms.

The team tackled this challenge using various shapes of gold (Au) nanowires. While silver (Ag) nanowires, known for their extreme thinness, lightness, and conductivity, are commonly used in wearable devices, the team fused them with gold. Initially, they developed bulk gold nanowires by coating the exterior of the silver nanowires, suppressing the galvanic phenomenon.

Subsequently, they created hollow gold nanowires by selectively etching the silver from the gold-coated nanowires. The bulk gold nanowires responded sensitively to temperature variations, whereas the hollow gold nanowires showed high sensitivity to minute changes in strain.

These nanowires were then patterned onto a substrate made of styrene-ethylene-butylene-styrene (SEBS) polymer, seamlessly integrated without separations. By leveraging two types of gold nanowires, each with distinct properties, they engineered an integrated sensor capable of measuring both temperature and strain.

Additionally, they engineered a logic circuit for signal analysis, utilizing the negative gauge factor resulting from introducing micrometer-scale corrugations into the pattern. This approach led to the successful creation of an intelligent wearable device system that not only captures but also analyzes signals simultaneously, all using a single material of Au.

The team's sensors exhibited remarkable performance in detecting subtle muscle tremors, identifying heartbeat patterns, recognizing speech through vocal cord tremors, and monitoring changes in body temperature. Notably, these sensors maintained high stability without causing damage to the material interfaces. Their flexibility and excellent stretchability enabled them to conform to curved skin seamlessly.

Professor Sei Kwang Hahn stated, "This research underscores the potential for the development of a futuristic bioelectronics platform capable of analyzing a diverse range of bio-signals." He added, "We envision new prospects across various industries including health care and integrated electronic systems."







Today's News

November 21, 2023

Boomerang-like beams of light: Research makes progress toward observing quantum backflow in two dimensions

Researchers develop comprehensive genetic map for bison, discover gene responsible for albinism

Cell-free quest for new antibiotics

Study reveals new clues about how whales and dolphins came to use echolocation

Serotine bats have sex unlike any other mammal

Massive 2022 eruption reduced ozone levels

Newly discovered brain circuit controls an aversion to salty tastes

Team uses gold nanowires to develop wearable sensor that measures two bio-signals

China's first independently developed Spectral Imaging Coronagraph obtains high-definition coronal images

Genomic study links cannabis abuse to multiple health problems

Innovative aquaculture system turns waste wood into nutritious seafood

Synthetic imagery sets new bar in AI training efficiency

Grant backs research on teaching networks to make better decisions

'Teenage galaxies' are unusually hot, glowing with unexpected elements

The future of construction with more sustainable cement



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful