Established in 2020 Wednesday, June 12, 2024

Ice cores provide first documentation of rapid Antarctic ice loss in the past
Evidence contained within an ice core shows that in one location the West Antarctic ice sheet thinned by 450 meters—that's more than the height of the Empire State Building—in just under 200 years. Image courtesy: University of Cambridge/British Antarctic Survey.

CAMBRIDGE.- Researchers from the University of Cambridge and the British Antarctic Survey have uncovered the first direct evidence that the West Antarctic Ice Sheet shrunk suddenly and dramatically at the end of the Last Ice Age, around eight thousand years ago.

The evidence contained within an ice core shows that in one location, the ice sheet thinned by 450 meters—that's more than the height of the Empire State Building—in just under 200 years.

This is the first evidence anywhere in Antarctica for such a fast ice loss. Scientists are worried that today's rising temperatures might destabilize parts of the West Antarctic Ice Sheet in the future, potentially passing a tipping point and inducing a runaway collapse. The new study, published in Nature Geoscience, sheds light on how quickly Antarctic ice could melt if temperatures continue to soar.

"We now have direct evidence that this ice sheet suffered rapid ice loss in the past," said Professor Eric Wolff, senior author of the new study from Cambridge's Department of Earth Sciences. "This scenario isn't something that exists only in our model predictions and it could happen again if parts of this ice sheet become unstable."

The Antarctic ice sheets, from west to east, contain enough freshwater to raise global sea levels by around 57 meters. The West Antarctic Ice Sheet is considered particularly vulnerable because much of it sits on bedrock that lies below sea level.

Model predictions suggest that a large part of the West Antarctic Ice Sheet could disappear in the next few centuries, causing sea levels to rise. Exactly when and how quickly the ice could be lost is, however, uncertain.

One way to train ice sheet models to make better predictions is to feed them with data on ice loss from periods of warming in Earth's history. At the peak of the Last Ice Age 20,000 years ago, Antarctic ice covered a larger area than today. As our planet thawed and temperatures slowly climbed, the West Antarctic Ice Sheet contracted to more or less its current extent.

"We wanted to know what happened to the West Antarctic Ice Sheet at the end of the Last Ice Age, when temperatures on Earth were rising, albeit at a slower rate than current anthropogenic warming," said Dr. Isobel Rowell, study co-author from the British Antarctic Survey. "Using ice cores, we can go back to that time and estimate the ice sheet's thickness and extent."

Ice cores are made up of layers of ice that formed as snow fell and were then buried and compacted into ice crystals over thousands of years. Trapped within each ice layer are bubbles of ancient air and contaminants that mixed with each year's snowfall—providing clues as to the changing climate and ice extent.

The researchers drilled a 651-meter-long ice core from Skytrain Ice Rise in 2019. This mound of ice sits at the edge of the ice sheet, near the point where grounded ice flows into the floating Ronne Ice Shelf.

After transporting the ice cores back to Cambridge at -20oC, the researchers analyzed them to reconstruct the ice thickness. First, they measured stable water isotopes, which indicate the temperature at the time the snow fell. Temperature decreases at higher altitudes (think of cold mountain air), so they were able to equate warmer temperatures with lower-lying, thinner ice.

They also measured the pressure of air bubbles trapped in the ice. Like temperature, air pressure also varies systematically with elevation. Lower-lying, thinner ice contains higher-pressure air bubbles.

These measurements told them that ice thinned rapidly 8,000 years ago. "Once the ice thinned, it shrunk really fast," said Wolff, "this was clearly a tipping point—a runaway process."

They think this thinning was probably triggered by warm water getting underneath the edge of the West Antarctic Ice Sheet, which normally sits on bedrock. This likely untethered a section of the ice from bedrock, allowing it to float suddenly and forming what is now the Ronne Ice Shelf. This then allowed neighboring Skytrain Ice Rise, no longer restrained by grounded ice, to thin rapidly.

The researchers also found that the sodium content of the ice (originating from salt in sea spray) increased about 300 years after the ice thinned. This told them that, after the ice thinned, the ice shelf shrunk back so that the sea was hundreds of kilometers nearer to their site.

"We already knew from models that the ice thinned at around this time, but the date of this was uncertain," said Rowell. Ice sheet models placed the retreat anywhere between 12,000 and 5,000 years ago and couldn't say how quickly it happened. "We now have a very precisely dated observation of that retreat, which can be built into improved models," said Rowell.

Although the West Antarctic Ice Sheet retreated quickly 8,000 years ago, it stabilized when it reached roughly its current extent. "It's now crucial to find out whether extra warmth could destabilize the ice and cause it to start retreating again," said Wolff.

Today's News

February 10, 2024

New fossil site of worldwide importance uncovered in southern France

Scandinavia's first farmers slaughtered the hunter-gatherer population

MIT physicists capture the first sounds of heat "sloshing" in a superfluid

First complete genome sequencing of a snakefly helps to understand its evolutionary history

Nanofiber bandages fight infection, speed healing

Researchers measure and control interactions between magnetic ripples using lasers

Ice cores provide first documentation of rapid Antarctic ice loss in the past

On Hawaii's Kilauea, little stresses add up

Probing proton pumping: New findings on protein folding in bacteriorhodopsin

Researchers discover one million new components of the human genome

Global study: Wild megafauna shape ecosystem properties

Faulty DNA disposal system causes inflammation

3D brain mapping opens a window to the aging brain

Research team takes a fundamental step toward a functioning quantum internet

3D printing technology for tissue: Researchers combine hydrogels and fibers

Harnessing light-powered nanoscale electrical currents to propel emerging technologies

Sitting idle boosts the performance of lithium metal batteries for next-generation EVs

Why olivine and diamonds are best friends

Technique could improve the sensitivity of quantum sensing devices

How one type of lung cancer can transform into another

Scientists develop a low-cost device to make cell therapy safer

New research with implications for drug discovery makes it possible to visualize the smallest protein clusters

Fusion research facility's final tritium experiments yield new energy record

Scientists uncover a new model for the effects of radiation in water systems


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez

Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful