Established in 2020 Wednesday, June 12, 2024


New insights on the role of nucleon exchange in nuclear fusion
Shaded outlines of calcium-40 and ytterbium-176 nuclei (40Ca+176Yb) as they collide, leading to fusion, with nucleon currents for neutrons in blue and protons in red. Image courtesy: Sait Umar.



NASHVILLE, TN.- Low-energy nuclear fusion reactions can potentially provide clean energy. In stars, low-energy fusion reactions during the stages of carbon and oxygen burning are critical to stellar evolution. These reactions also offer valuable insights into the exotic processes occurring in the inner crust of neutron stars as they accumulate matter.

However, scientists do not fully understand the underlying dynamics governing these reactions. The key to unlocking the fusion process is understanding how nucleons move between the two fusing nuclei. As the nuclei draw close enough for the nuclear forces to become effective, neutrons and protons can migrate from one nucleus to another. This movement potentially eases the fusion process.

A recent study has explored the influence on low-energy fusion processes of isospin composition. This is a key nuclear property that differentiates protons from neutrons. The researchers used computational techniques and theoretical modeling to investigate the fusion of different nuclei with varying isospin configurations. The results show that the isospin composition of the nuclei in a fusion reaction plays a crucial role in understanding the reaction. The paper is published in the journal Physical Review C.

In this study, researchers at Fisk University and Vanderbilt University used high-performance computational and theoretical modeling techniques to conduct a detailed many-body method study of how the dynamics of isospin influence nuclear fusion at low energies across a series of isotopes. The study also examined how the shape of the nuclei involved affect these dynamics. In systems where the nuclei are not symmetrical, the dynamics of isospin become particularly important, often leading to a lowered fusion barrier, especially in systems rich in neutrons. This phenomenon can be explored using facilities that specialize in the generation of beams composed of exotic, unstable nuclei.

The findings provide critical knowledge regarding the fundamental nuclear processes governing these reactions, which have broad implications for fields such as nuclear physics, astrophysics, and, perhaps someday, fusion-based energy.







Today's News

June 12, 2024

Wind from black holes may influence development of surrounding galaxies

Gut microbes from aged mice induce inflammation in young mice, study finds

Brain's structure hangs in 'a delicate balance'

New computer vision method helps speed up screening of electronic materials

Novel quantum sensor breaks limits of optical measurement using entanglement

Scientists engineer yellow-seeded camelina with high oil output

New technique could help build quantum computers of the future

How invertebrates support the decomposition of plants

Small, cool and sulfurous exoplanet may help write recipe for planetary formation

Fine-tuning leaf angle with CRISPR improves sugarcane yield

Research team develops first-in-kind protocol for creating 'wired miniature brains'

A strikingly natural coincidence: Researchers find heating gallium nitride and magnesium forms a superlattice

Millions of insects migrate through 30-meter Pyrenees pass

Combined X-ray surveys and supercomputer simulations track 12 billion years of cosmic black-hole growth

Scientists make and test efficient water-splitting catalyst predicted by theory

Lone star state: Tracking a low-mass star as it speeds across the Milky Way

Webb opens new window on supernova science

Splitting hairs: Research team applies science of biomechanics to understand our bad hair days

Peeking into the invisible world of the atmosphere

New insights on the role of nucleon exchange in nuclear fusion



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful