Established in 2020 Wednesday, April 17, 2024


Cracking the secrets of dinosaur eggshells
Researchers studied eggshell microstructures to help estimate whether an unknown sample was laid by an ornithopod (herbivorous; top) or a theropod (carnivorous; bottom). Image: Adapted from ACS Omega 2020, DOI: 10.1021/acsomega.0c03334.



WASHINGTON, DC.- Since the famous discovery of dinosaur eggs in the Gobi Desert in the early 1920s, the fossilized remains have captured the imaginations of paleontologists and the public, alike. Although dinosaur eggs have now been found on every continent, it’s not always clear to scientists which species laid them. Now, researchers reporting in ACS Omega have narrowed down the list for an unknown eggshell from Mexico by comparing its microstructure and composition with four known samples.




Because many dinosaur eggs are similar in size and shape, it can be difficult to determine what type of dinosaur laid them. Clues can come from fossilized embryos (which are rare), hatchlings in the same nest or nearby adult remains. Scientists also have identified microscopic features of eggshells that differ among groups of dinosaurs. In addition, researchers have studied the elemental composition of fossil eggshells to learn more about the paleoenvironment and conditions that led to the eggs’ fossilization. Abel Moreno and colleagues wanted to compare the microstructure and composition of five dinosaur eggshells from nests in the El Gallo Formation of Baja California, Mexico. Based on the eggs’ shapes and sizes and the fossil record of the area, the researchers had concluded that three of the eggs were laid by ornithopods (bipedal herbivores) of the hadrosaur family (duck-billed dinosaurs) and one by a theropod (bipedal carnivores) of the troodontidae family (small, bird-like dinosaurs). The remaining sample was too damaged to classify by the naked eye.

Using scanning electron microscopy, the team examined the external and internal surfaces and a cross-section of each eggshell. In contrast to the smooth outer surface of the theropod shell, the shells from the ornithopods and the unknown sample had nodes at different distances across the shell. Images of shell cross-sections from the ornithopods revealed that mammillary cones –– calcite crystals on the inner surface of the shell –– formed thin, elongated columns arranged in parallel, with irregular pores. In contrast, the eggshell from the theropod showed thicker, shorter cones arranged in a bilayer, with wider pores. The unknown sample more closely resembled the ornithopod eggshells, leading the researchers to hypothesize that it was probably also from the hadrosaur family. In addition, the researchers conducted an elemental composition analysis, which they say is the first such analysis on dinosaur eggshells collected in Mexico. They say the findings might help reveal how the fossilization process varied among species and locales.

The authors acknowledge funding from FOMIX-Yucatan, the National Council of Science and Technology (CONACYT) of Mexico and the General Directorate of Academic Personnel Affairs (DGAPA)-Support Program for Research and Technological Innovation Projects (PAPIIT).







Today's News

October 31, 2020

Artificial intelligence model detects asymptomatic Covid-19 infections through cellphone-recorded coughs

Covid-19 patients infect half of household: US govt study

UCLA researchers create millions of diverse T cells from a single blood stem cell

Cracking the secrets of dinosaur eggshells

Estrogenic and anti-estrogenic effects of PFASs could depend on the presence of estrogen

Deep learning algorithms helping to clear space junk from our skies

First international, Chinese expert meeting on virus origin: WHO

Australian invention can save lives and boost productivity

Trends in hurricane behavior show stronger, slower and farther-reaching storms

PM's Prize for Science honours gravitational-wave researchers

Flash graphene rocks strategy for plastic waste

Rice chemists pitch 'green' method for making pharmaceutical intermediates

The chemistry behind self-driving cars

Cellular networks vulnerable to wildfires across U.S.

Shedding light on how urban grime affects chemical reactions in cities

Truncated immune system receptors may regulate cellular activity

Copolymer helps remove pervasive PFAS toxins from environment

A patch that could help heal broken hearts



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful