Established in 2020 Wednesday, June 12, 2024


Brown carbon 'tarballs' detected in Himalayan atmosphere
View northward of Mount Everest from an aircraft from airline company Drukair in Bhutan. The aircraft is south of the mountains, directed north. Mount Everest is above the ridge connecting Nuptse and Lhotse. Image courtesy: Papa Lima Whiskey 2.



WASHINGTON, DC.- Some people refer to the Himalaya-Tibetan Plateau as the “third pole” because the region has the largest reserve of glacial snow and ice outside of the north and south poles. The glaciers, which are extremely sensitive to climate change and human influence, have been retreating over the past decade. Now, researchers reporting in ACS’ Environmental Science & Technology Letters have detected light-absorbing “tarballs” in the Himalayan atmosphere, which could contribute to glacial melt.




Burning biomass or fossil fuels releases light-absorbing, carbonaceous particles that can deposit on snow and ice, possibly hastening the melting of glaciers. Previous research has shown that one type of particle, called black carbon, can be transported long distances by wind to the Himalayan atmosphere. But much less is known about the presence of brown carbon, a particle that can form tarballs –– small, viscous spheres consisting of carbon, oxygen and small amounts of nitrogen, sulfur and potassium. Weijun Li and colleagues wanted to see what types of individual aerosol particles were present in air samples taken at a remote, high-altitude research station on the northern slope of the Himalayas.

Using electron microscopy, the researchers unexpectedly found that about 28% of the thousands of particles in the air samples from the Himalayan research station were tarballs, and the percentage increased on days with elevated levels of pollution. Analyzing wind patterns and satellite data revealed that a dense array of active fire spots, corresponding to large-scale wheat-residue burning on the Indo-Gangetic Plain, occurred along the pathways of air masses that reached the Himalayan research station during sampling. Through modeling calculations, the team estimated that tarballs deposited on glacial surfaces could contribute a significant warming effect. As a result, future climate models should consider the long-range transport of tarballs to the Himalayas, the researchers say.

The authors acknowledge funding from the National Natural Science Foundation of China, the China Postdoctoral Science Foundation, the Research Funding of School of Earth Sciences of Zhejiang University, the Hundred Talents Program in Zhejiang University and the Second Tibetan Plateau Scientific Expedition and Research Program.







Today's News

November 5, 2020

Radio burst from within Milky Way may help solve cosmic mystery

Five-eyed fossil shrimp is evolutionary 'missing link'

Luminescent wood could light up homes of the future

UH and CWRU announce study of AstraZeneca's COVID-19 vaccine candidate

A woman's place? Out hunting with spears, study finds

Galaxies have gotten hotter as they've gotten older

Bats can predict the future, JHU researchers discover

Automated blood oxygen monitoring system to boost COVID-19 fight

Brown carbon 'tarballs' detected in Himalayan atmosphere

New flexible and highly reliable sensor

Western diet impairs odor-related learning and olfactory memory in mice

Hot or cold, weather alone has no significant effect on COVID-19 spread

Denmark to cull millions of minks over mutated coronavirus

Scientists find chink in coral-eating starfish armour

A single-application treatment for ear infections that doesn't need refrigeration

Self-watering soil could transform farming

New research confirms obesity is a cause of kidney disease

Fighting food fraud from farm to fork with a mobile ingredient tracing system



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful