Established in 2020 Wednesday, April 17, 2024


3D-printed, lifelike heart models could help train tomorrow's surgeons
Researchers have developed a way to 3D print a full-size model of a patient's own heart. Image courtesy: Screenshot of American Chemical Society video.



WASHINGTON, DC.- Full-size, realistic models of human organs could help surgeons train and practice before they cut into a patient. However, it’s been challenging to make inexpensive models of a size, complexity and material that simulates human organs. Now, researchers reporting in ACS Biomaterials Science & Engineering have developed a way to 3D print a full-size model of a patient’s own heart.




For complex heart surgeries, having a chance to plan and practice on a realistic model could help surgeons anticipate problems, leading to more successful outcomes. Current 3D printing techniques have been used to make full-size organ models, but the materials generally don’t replicate the feel or mechanical properties of natural tissue. And soft, tissue-like materials, such as silicone rubbers, often collapse when 3D printed in air, making it difficult to reproduce large, complex structures. Eman Mirdamadi, Adam Feinberg and colleagues recently developed a technique, called freeform reversible embedding of suspended hydrogels (FRESH), which involves 3D printing soft biomaterials within a gelatin bath to support delicate structures that would otherwise collapse in air. However, the technique was previously limited to small objects, so the researchers wanted to adapt it to full-size organs.

The team’s first step was to show that alginate, an inexpensive material made from seaweed, has similar material and mechanical properties as cardiac tissue. Next, the researchers placed sutures in a piece of alginate, which held even when stretched –– suggesting that surgeons could practice stitching up a heart model made from the material. In preparation for making the heart model, the team modified their FRESH 3D printer to make larger objects. They used this device and magnetic resonance imaging (known as MRI) scans from a patient to model and print a full-size adult human heart, as well as a section of coronary artery that they could fill with simulated blood. The heart model was structurally accurate, reproducible and could be handled outside of the gelatin bath. The method could also be applied to printing other realistic organ models, such as kidneys or liver, the researchers say.

The authors acknowledge funding from the Office of Naval Research, the U.S. Food & Drug Administration and the National Institutes of Health.







Today's News

November 19, 2020

Merging stars produce glowing Blue Ring Nebula

World-first skin cancer treatment aims to help transplant patients

Study reveals how smoking worsens COVID-19 infection in the airways

Prehistoric shark hid its largest teeth

Scientists defy nature to make insta-bling at room temperature

Will small rockets finally lift off?

3D-printed, lifelike heart models could help train tomorrow's surgeons

Children produce different antibodies in response to new coronavirus

A DNA-based nanogel for targeted chemotherapy

Wild animal populations not declining as feared: study

Gene signature predicts whether localized prostate cancer is likely to spread

Study: Solar geoengineering may not be a long-term solution for climate change

Alzheimer's disease drug may help fight against antibiotic resistance

Gut microbiome manipulation could result from virus discovery

Antibiotic resistance genes in three Puerto Rican watersheds after Hurricane Maria

Scientists identify brain cells that drive wakefulness and resist general anesthetics

For neural research, wireless chip shines light on the brain

Stanford researchers combine Zillow and census data to determine residential water needs



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful