Established in 2020 Wednesday, April 17, 2024


Tasmanian tiger pups found to be extraordinarily similar to wolf pups
Micro-CT scanning has helped researchers establish that Tasmanian tigers start to look like dogs in the pouch. Image courtesy: The Pask Lab.



MELBOURNE.- Micro-CT scanning and digital reconstructions have been used to compare the skulls of the Tasmanian tiger (thylacine) and wolf across their early development and into adulthood, establishing that not only did the thylacine resemble the wolf as adults, but also as newborns and juveniles.

“Remarkably, the Tasmanian tiger pups were more similar to wolf pups than to other closely related marsupials,” Professor Andrew Pask from the University of Melbourne said.

The collaborative study with Flinders University and Museums Victoria complement earlier findings that thylacine and wolf have evolved similar instructions in their genome, which influence cranial stem cells during development.

While scientists have worked out that different animals evolve to look the same because they occupy similar places in the ecosystem, they have yet to explain how animals evolve to become convergent, particularly the forces driving their early development. The study provides significant new insights into how animals develop to look a certain way and then when in development these things happen.




Through collaborations with Australian museums and the Museum of the North in Alaska, USA, the team loaned thylacine and wolf skulls of different ages, stages and sizes, from newborns through to fully grown adults. They then applied micro-CT scanning to the skulls to generate digital models which could be compared to determine when during development similarities arose between the thylacine and wolf.

After reconstructing the early pouch development of the thylacine, lead author Dr Axel Newton focused on the question of when during development the Tasmanian tiger establish its dog-like skull shape. “We know that the thylacine and wolf look similar as adults, but we don’t know when they started to exhibit their remarkable similarities during development,” he said.

Micro-CT scanning is a technique similar to a medical CAT scan, allowing researchers to generate high-resolution, digital reconstructions of complex shapes such as skulls and bones. From here they were able to establish that not only did the Tasmanian tiger resemble the wolf as adults but were very similar as newborns and juveniles.

Dr Vera Weisbecker, from Flinders University, said all marsupials – including the thylacine – are born with unusually well-developed jaws relative to the rest of the head. “Scientists think that this reduces the potential of marsupials to evolve some extreme skull shapes. However, it clearly did not prevent the evolution of the thylacine’s unusual wolf-like skull!“

The University of Melbourne’s Dr Christy Hipsley, who specialises in CT, said the research shows how 3D imaging can reveal hidden diversity in nature. “By comparing entire growth series from newborns to adults, we were able to visualise tiny differences in development that pinpoint when and where in the skull adaptations to carnivory arise on a cellular level. That is only made possible through museum loans of preserved specimens, in this case from as far away as Alaska.”







Today's News

January 12, 2021

Tasmanian tiger pups found to be extraordinarily similar to wolf pups

BioNTech boosts 2021 vaccine supply forecast to 2 bn doses

Rice 'flashes' new 2D materials

Boosting solar energy conversion efficiency

Research explains why crocodiles have changed so little since the age of the dinosaurs

Sniffing out an abrupt COVID-19 symptom

Despite vaccines, no Covid herd immunity in 2021: WHO

WHO says China mission not playing blame game

Delft researchers build artificial chromosome

Carbon monoxide reduced to valuable chemical

Frozen egg wastage prompts calls for women to donate unused eggs

Breakthrough research heralds a new diamond age

Online collaborative platforms lead to advances in archaeological survey of the Andes

Unique study incorporates fluid dynamics and more to evaluate, enhance future implants

2D compound shows unique versatility

Tulane scientist honored for research on reproductive health

New process more efficiently recycles excess CO2 into fuel, study finds

More management measures lead to healthier fish populations



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful