Established in 2020 Wednesday, April 17, 2024


Ultra-absorptive nanofiber swabs could improve SARS-CoV-2 test sensitivity
A new type of nanofiber swab could improve sample collection and test sensitivity for SARS-CoV-2 and other biological specimens; ruler at left shows centimeters. Image: Adapted from Nano Letters 2021, DOI: 10.1021/acs.nanolett.0c04956.



WASHINGTON, DC.- Rapid, sensitive diagnosis of COVID-19 is essential for early treatment, contact tracing and reducing viral spread. However, some people infected with SARS-CoV-2 receive false-negative test results, which might put their and others’ health at risk. Now, researchers reporting in ACS’ Nano Letters have developed ultra-absorptive nanofiber swabs that could reduce the number of false-negative tests by improving sample collection and test sensitivity.




Currently, the most sensitive test for COVID-19 involves using a long swab to collect a specimen from deep inside a patient’s nose, and then using a method called reverse transcriptase-polymerase chain reaction (RT-PCR) to detect SARS-CoV-2 RNA. But if the viral load is low, which can occur early in the course of infection, the swab might not pick up enough virus to be detectable. Jingwei Xie and colleagues wanted to develop a nanofiber swab that could absorb and then release more viruses and other biological specimens, improving the sensitivity of diagnostic tests.

The researchers used an electrospinning technique to make 1-cm-long cylinders composed of aligned nanofiber layers, which they coated with a thin layer of gelatin and bonded to plastic swab sticks. In lab tests, the porous nanofiber cylinders absorbed and released more proteins, cells, bacteria, DNA and viruses from liquids and surfaces than the cotton or flocked swabs commonly used for COVID-19 testing. The team made dilutions of SARS-CoV-2 virus, swabbed the liquid samples and tested for viral RNA with RT-PCR. Compared with the two other types of swabs, the nanofiber ones reduced the false-negative rate and detected SARS-CoV-2 at a 10-times lower concentration. In addition to allowing more accurate and sensitive COVID-19 testing, the nanofiber swabs have far-reaching potential in diagnosing other diseases, testing for foodborne illnesses and helping forensic teams identify crime suspects from miniscule biological specimens, the researchers say.

The authors acknowledge funding from the University of Nebraska Medical Center (UNMC), the National Institute of General Medical Sciences and the UNMC College of Medicine COVID-19 Rapid Response Grants.







Today's News

January 28, 2021

Models suggest galactic collisions can starve massive black holes

Regeneron works on UK, S.African Covid variants: company

A little soap simplifies making 2D nanoflakes

Micro-brewing goes more micro

Five or six doses? Controversy over Pfizer vaccine vials

Purported phosphine on Venus more likely to be ordinary sulfur dioxide, new study shows

Genetically modified mosquitoes key to stopping Zika virus spread

Scientists jump-start two people's brains after coma

Ultra-absorptive nanofiber swabs could improve SARS-CoV-2 test sensitivity

Genome-editing tool TALEN outperforms CRISPR-Cas9 in tightly packed DNA

Dramatic shark decline leaves 'gaping hole' in ocean: study

Scientists reveal dynamic mechanism of lead-free quadruple perovskite nanocrystals

Major discovery helps explain coral bleaching

Oceans warmed steadily over 12,000 years: study

A protein that can melt tumors discovered at Vanderbilt

New research on carbon cracks open secrets deep inside exoplanets

MU Research Reactor to supply radioisotope for targeted cancer therapy

Juicing technique could influence healthfulness of fresh-squeezed juice

A mild way to upcycle plastics used in bottles into fuel and other high-value products



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful