Established in 2020 Wednesday, October 27, 2021


EPFL researchers cut atom-sized patterns into 2D materials
EPFL researchers have developed a high-precision technology that enables them to carve nanometric patterns into two-dimensional materials. © 2020 EPFL.



LAUSANNE.- With their pioneering nanotechnology, EPFL researchers have achieved the impossible. They can now use heat to break the links between atoms with a miniature scalpel. Its extremely hard to structure 2D materials using conventional lithography, which often employs aggressive chemicals or accelerated, electrically charged particles, like electrons or ions, that can damage the materials properties, says Xia Liu, a researcher and postdoc in the School of Engineerings Microsystems Laboratory. Our technique, however, uses a localized heat and pressure source to accurately cut into the 2D materials.”

Our technology is similar to the art of paper-cutting, which is common in this region of Switzerland, but on a much smaller scale, explains Ana Conde Rubio, co-author of the study. We use heat to modify the substrate and make it more flexible and, in some cases, even turn it into a gas. We can then more easily carve into the 2D material.”

A sharp tip
Xia Liu, Samuel Howell, Ana Conde Rubio, Giovanni Boero and Jürgen Brugger used molybdenum ditelluride (MoTe2), a 2D material thats similar to graphene. Its less than a nanometer or three layers of atoms thick. The MoTe2 is placed on a polymer that reacts to changes in temperature. When the polymer is exposed to heat, it sublimates, which means that it goes from a solid to a gaseous state, explains Liu.

The researchers from the Institute of Microengineering used a new nanoscale structuring technique called thermal scanning probe lithography (t-SPL), which works in a similar way to a force scanning microscope. They heat a sharp nano-sized tip to more than 180°C, bring it into contact with the 2D material and apply a bit of force. This causes the polymer to sublimate. A thin layer of MoTe2 then breaks off without damaging the rest of the material.




Small and more efficient components
The researchers will be able to use this technology to carve extremely accurate patterns in 2D materials. We use a computer-driven system to control the ultra-fast heating and cooling process and the position of the tip, explains Samuel Howell, another co-author. This enables us to make pre-defined indents to create, for instance, the nanostrips that are used in nanoelectronic devices.”

But whats so useful about working on such a small scale? A lot of 2D materials are semi-conductors and can be integrated into electronic devices, says Liu. This generic technology will be very useful in nanoelectronics, nanophotonics and nanobiotechnology, as it will help to make electronic components smaller and more efficient.”

Enhancing the accuracy
The next phase of the research will focus on looking at a wider range of materials and finding combinations that will work in integrated nanosystems. And the researchers want to rework the design of the cantilever and its tip to make the cutting process even more accurate.

More broadly, the scientists in the Microsystems Laboratory are looking to develop a new generation of fabrication techniques for flexible microsystems. Polymer-based microelectromechanical systems (MEMS) have a lot of potential electronic and biomedical applications, explains Prof. Jürgen Brugger. But were still in the early stages of developing techniques for designing functional polymers in 3D microsystems.”

Brugger hopes to push the boundaries and find new materials and processes for MEMS by focusing on the stencil, the printing process, the directed self-assembly of polymers, and localized thermal processing.







Today's News

June 20, 2020

EPFL researchers cut atom-sized patterns into 2D materials

Carefully, Yale labs stir to life across campus

Four Columbia professors named finalists for Blavatnik Award for Young Scientists

In China's vaccine race, shortage of monkeys and weekends

Microbes could 'help save Old Masters' and catch forgers

Scientists develop new method for detecting black hole mergers

Human activity on rivers outpaces, compounds effects of climate change

Study shows how Australia's burrowing frogs handle the heat

Blood test to monitor cancer up to ten times more sensitive than current methods

AI-generated medical reports to offer accurate, timely diagnosis of COVID-19

Redesigning hand sanitizer and donating 7,000 gallons to fight Covid-19

Homeless people are more likely to be put on ventilators for respiratory infections than non-homeless

Surprising signal in dark matter detector

A call for better governance of climate engineering technologies

Neurons can shift how they process information about motion

How a historic drought led to higher power costs and emissions

Plants can camouflage odours to avoid being eaten: study



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful