Established in 2020 Wednesday, June 12, 2024


New technology enables predictive design of engineered human cells
Synthetic biologists achieve a breakthrough in the design of living cells. Image courtesy: Justin Muir.



EVANSTON, ILL.- Northwestern University synthetic biologist Joshua Leonard used to build devices when he was a child using electronic kits. Now he and his team have developed a design-driven process that uses parts from a very different kind of toolkit to build complex genetic circuits for cellular engineering.

One of the most exciting frontiers in medicine is the use of living cells as therapies. Using this approach to treat cancer, for example, many patients have been cured of previously untreatable disease. These advances employ the approaches of synthetic biology, a growing field that blends tools and concepts from biology and engineering.

The new Northwestern technology uses computational modeling to more efficiently identify useful genetic designs before building them in the lab. Faced with myriad possibilities, modeling points researchers to designs that offer real opportunity.

“To engineer a cell, we first encode a desired biological function in a piece of DNA, and that DNA program is then delivered to a human cell to guide its execution of the desired function, such as activating a gene only in response to certain signals in the cell’s environment,” Leonard said. He led a team of researchers from Northwestern in collaboration with Neda Bagheri from the University of Washington for this study.

Leonard is an associate professor of chemical and biological engineering in the McCormick School of Engineering and a leading faculty member within Northwestern’s Center for Synthetic Biology. His lab is focused on using this kind of programming capability to build therapies such as engineered cells that activate the immune system, to treat cancer.

Bagheri is an associate professor of biology and chemical engineering and a Washington Research Foundation Investigator at the University of Washington Seattle. Her lab uses computational models to better understand -- and subsequently control -- cell decisions. Leonard and Bagheri co-advised Joseph Muldoon, a recent doctoral student and the paper’s first author.

“Model-guided design has been explored in cell types such as bacteria and yeast, but this approach is relatively new in mammalian cells,” Muldoon said.




The study, in which dozens of genetic circuits were designed and tested, was published today (Feb. 19) in the journal Science Advances. Like other synthetic biology technologies, a key feature of this approach is that it is intended to be readily adopted by other bioengineering groups.

To date, it remains difficult and time-consuming to develop genetic programs when relying upon trial and error. It is also challenging to implement biological functions beyond relatively simple ones. The research team used a “toolkit” of genetic parts invented in Leonard’s lab and paired these parts with computational tools for simulating many potential genetic programs before conducting experiments. They found that a wide variety of genetic programs, each of which carries out a desired and useful function in a human cell, can be constructed such that each program works as predicted. Not only that, but the designs worked the first time.

“In my experience, nothing works like that in science; nothing works the first time. We usually spend a lot of time debugging and refining any new genetic design before it works as desired,” Leonard said. “If each design works as expected, we are no longer limited to building by trial and error. Instead, we can spend our time evaluating ideas that might be useful in order to hone in on the really great ideas.”

“Robust representative models can have disruptive scientific and translational impact,” Bagheri added. “This development is just the tip of the iceberg.”

The genetic circuits developed and implemented in this study are also more complex than the previous state of the art. This advance creates the opportunity to engineer cells to perform more sophisticated functions and to make therapies safer and more effective.

“With this new capability, we have taken a big step in being able to truly engineer biology,” Leonard said.

The research was supported by the National Institute of Biomedical Imaging and Bioengineering (award number 1R01EB026510), the National Institute of General Medical Sciences (award number T32GM008152) and the National Cancer Institute (award number F30CA203325).

The title of the paper is “Model-guided design of mammalian genetic programs.”







Today's News

February 22, 2021

New research could boost a solar-powered fuel made by splitting water

Russia detects first case of H5N8 avian flu in humans

New technology enables predictive design of engineered human cells

'Jumping genes' repeatedly form new genes over evolution

America has sent five rovers to Mars -- when will humans follow?

Engineers place molecule-scale devices in precise orientation

'Classic triad' of symptoms misses positive COVID-19 cases, study finds

High blood pressure causes atrial fibrillation, find researchers

UC San Diego physicists uncover phenomena tied to new state of matter

Researchers create 'beautiful marriage' of quantum enemies

Researchers find evidence of protein folding at site of intracellular droplets

Heat loss control method in fusion reactors

Big causes of heart failure in COVID-19 patients include obesity, hypertension

Centre of excellence to tackle MS

Scientists find way for mass production of near-zigzag carbon nanotubes

Soil quality index for rubber plantations in tropical China computed

NASA science, cargo launches on 15th Northrop Grumman resupply mission to Space Station

IBM's Quantum computer links two quantum revolutions



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful