Established in 2020 Wednesday, April 17, 2024


Scientists discover two new species of ancient, burrowing mammal ancestors
This portrait shows the tritylodontid Fossiomanus sinensis (upper right) and the eutriconodontan Jueconodon cheni in burrows; both lived the Early Cretaceous Jehol Biota (about 120 million years ago), northeastern China, and showed convergent skeletal features adapted to fossorial lifestyle. Image courtesy: © Chuang Zhao.



NEW YORK, NY.- Paleontologists have discovered two new species of mammal-like, burrowing animals that lived about 120 million years ago in what is now northeastern China. The new species, described in the journal Nature, are distantly related but independently evolved traits to support their digging lifestyle. They represent the first “scratch-diggers” discovered in this ecosystem.

“There are many hypotheses about why animals dig into the soil and live underground,” said lead author Jin Meng, a curator in the American Museum of Natural History’s Division of Paleontology. “For protection against predators, to maintain a temperature that’s relatively constant—not too hot in the summer and not too cold in the winter—or to find food sources like insects and plant roots. These two fossils are a very unusual, deep-time example of animals that are not closely related and yet both evolved the highly specialized characteristics of a digger.”

The fossil mammaliamorph species—predecessors to mammals—were discovered in the Jehol Biota, which represents the Early Cretaceous epoch, about 145 to 100 million years ago. One is a mammal-like reptile called a tritylodontid and is the first of its kind to be identified in this biota. About a foot in length, it was given the name Fossiomanus sinensis (Fossio, “digging” and manus “hand;” sinensis, “from China”). The other is named Jueconodon cheni (Jue, “digging”—Chinese pinyin—and conodon “cuspate tooth”; cheni for Y. Chen, who collected the fossil). It is a eutriconodontan, a distant cousin of modern placental mammals and marsupials, which were common in the habitat. It is about 7 inches long.




Mammals that are adapted to burrowing have specialized traits for digging. The researchers found some of these hallmark features—including shorter limbs, strong forelimbs with robust hands, and a short tail—in both Fossiomanus and Jueconodon. In particular, these characteristics point to a type of digging behavior known as “scratch digging,” accomplished mainly by the claws of the forelimbs.

“This is the first convincing evidence for fossorial life in those two groups,” Meng said. “It also is the first case of scratch diggers we know about in the Jehol Biota, which was home to a great diversity of life, from dinosaurs to insects to plants.”

The animals also share another unusual feature: an elongated vertebral column. Typically, mammals have 26 vertebrae from the neck to the hip. However, Fossiomanus had 38 vertebrae—a staggering 12 more than the common state—while Jueconodon had 28. To try to determine how these animals got their elongated trunks, the paleontologists turned to recent studies in developmental biology, finding that the variation could be attributed to gene mutations that determine the number and shape of the vertebrae in the beginning of the animals’ embryotic development. Variation in vertebrae number can be found in modern mammals as well, including in elephants, manatees, and hyraxes.

Other authors on the study include Fangyuan Mao from the Chinese Academy of Sciences and the American Museum of Natural History, Chi Zhang from the Chinese Academy of Sceinces, and Cunyu Liu from the Beipiao Pterosaur Museum of China.

The study was supported in part by the National Natural Science Foundation of China, grant no.s 41688103 and 42072002; the Chinese Academy of Sciences Strategic Priority Research Program, Youth Innovation Promotion Association, and 100 Young Talents Program; and the Kalbfleisch Fellowship of the American Museum of Natural History’s Richard Gilder Graduate School.







Today's News

April 9, 2021

Scientists discover two new species of ancient, burrowing mammal ancestors

Modern human brain originated in Africa around 1.7 million years ago

First results from Muon g-2 experiment strengthen evidence of new physics

CUHK develops biohybrid soft microrobots with a rapid endoluminal delivery strategy for gastrointestinal (GI) diseases

Big beats: Gorilla chest thumps 'signal' body size

French 4,000-year-old carving is oldest map in Europe: study

Team cracks eggs for science

No pain, no gain in exercise for peripheral artery disease

Seeing quadruple

'Bug brain soup' expands menu for scientists studying animal brains

Bioengineer wins NIH grant to attack cystic fibrosis

Study reveals uncertainty in how much carbon the ocean absorbs over time

Corals carefully organize proteins to form rock-hard skeletons

NASA selects innovative, early-stage tech concepts for continued study

Meet "the terminator": UMBC-led research connects solar cycle with climate predictions in a new way

Scientists map "pulse" of groundwater flow through California's Central Valley

A Swiss Army knife for genomic data

Stanford researchers and others illuminate long-standing mystery of sea turtles' epic migrations



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful