Established in 2020 Monday, September 20, 2021


How long do black carbon particles linger in the atmosphere?
Black carbon particles are spread throughout our atmosphere, produced by the burning of fuels or industrial processes. Image courtesy: NASA's Goddard Space Flight Center Scientific Visualization Studio.



WASHINGTON, DC.- There's a stubborn, heat-absorbing particle that floats along in Earth's atmosphere: It initially doesn't like water, it absorbs light, and it takes its time moving on. Black carbon in the atmosphere tends to linger until it finally absorbs enough water to fall from the sky. In the meantime, black carbon absorbs the sun's energy and heats up surrounding air, creating a radiative effect.

Fresh, young black carbon tends to be resistant to water. Over time, the particles age and become more hygroscopic, or able to absorb water from the air. But when does black carbon start absorbing water, act as cloud nuclei, and remove itself from the atmosphere?

Researchers previously investigated the hygroscopic conditions of black carbon in the lab, with limited conditions on chemical sources and water vapor conditions. In all of these studies, the cloud nucleation values of black carbon were indirect measurements.




In a new study by Hu et al., researchers concurrently measured the concentration of cloud condensation nuclei and black carbon particles. The sampling site was near heavily trafficked roads and industrial centers in Wuhan, China, an urban megacity in the central part of the country.

They first corrected for the size of particles, then measured cloud condensation nuclei and individual black carbon particles in certain levels of water supersaturation in the atmosphere. The team found that the activation diameter, or the size of the black carbon particle where half of the particles will nucleate and precipitate out, was 144 ± 21 nanometers at 0.2% supersaturation. How these black carbon–containing particles could act as cloud nuclei is determined by their size combined with their coatings, the authors say, and in general, the less saturated the air was, the bigger the particles had to be to nucleate.

In addition, the team found that a particle itself may influence the size of nucleation. For instance, the amount of organic content in a particle or any coating on the black carbon can change the hygroscopicity and therefore the activation.

The research team noted that their work can help improve estimates of the longevity of suspended black carbon particles in the atmosphere and therefore the radiative impacts those particles can have.







Today's News

September 14, 2021

New immunotherapy method turns activated specifically in tumor

Cosmic concrete developed from space dust and astronaut blood

Engineers grow pancreatic "organoids" that mimic the real thing

Study provides evidence for 'new physics'

No need for a vaccine third jab booster: study

Magnetism generated in 2D organic material by star-like arrangement of molecules

What was really the secret behind Van Gogh's success?

New hope for antibody to treat muscular dystrophy

Doctors identify an eye cancer culprit

Study provides basis to evaluate food subsectors' emissions of three greenhouse gases

Cuban scientists reject 'Havana Syndrome' claims

Observation of quasi-equilibrium phase coexistence in supercritical fluids

No bull! Climate researchers 'potty train' peeing cows

How long do black carbon particles linger in the atmosphere?

Docking peptides, slow to lock, open possible path to treat Alzheimer's

White blood cells that can help destroy malignant tumors

Researchers design sensors to rapidly detect plant hormones

How genetic islands form among marine molluscs



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful