Established in 2020 Wednesday, April 17, 2024


New scientific resource will help uncover the genetic underpinnings of type 2 diabetes
The research required collecting and examining an enormous amount of information, which was made possible through the use of supercomputing resources and new statistical methods. Image: Unsplash.



BOSTON, MASS.- Many variants in the human genome have been linked to type 2 diabetes, but because most do not lie within genes that code for proteins, it's unclear how they might cause disease. Now an international team, including investigators at Massachusetts General Hospital, has developed a resource to help uncover the impact of these genetic variants.

The work, which is described in Cell Reports, relies on the knolwedge that abnormalities in groups of pancreatic cells called islets, which produce and release hormones that regulate blood sugar levels, drive the development of type 2 diabetes. Unfortunately, however, it's very difficult to obtain samples of human islets. To overcome this challenge, scientists from Spain, Belgium, Italy, Sweden, Finland, the UK, and the US banded together to obtain more than 500 human islet samples from patients with and without type 2 diabetes and to extract genomic and gene expression data from these samples. With these data, the researchers created what they named TIGER (for Translational human pancreatic Islet Genotype tissue-Expression Resource).

The research required collecting and examining an enormous amount of information, which was made possible through the use of supercomputing resources and new statistical methods.

Analyses of TIGER revealed that certain genetic variants in islets from patients with type 2 diabetes control the expression of particular genes. So far, 32 novel genes were identified that may contribute to type 2 diabetes risk.

"This resource will be very useful to identify genes that may be related with the genetic variants that we have found associated with type 2 diabetes," says co–senior author Josep M. Mercader, Ph.D., a research-scientist at MGH's Diabetes Unit and Center for Genomic Medicine. "Knowing the gene behind a given genetic association is the first step for identifying potential drug targets, or to better understand the physiology of different types of diabetes."

TIGER's data are publicly available and easily accessible to the diabetes research community through the TIGER web portal.

"We are proud that we are now able to share this wealth of data to the scientific community in an easily accessible way for all researchers in the type 2 diabetes field, without the need of computational or bioinformatic expertise," says co–lead author Lorena Alonso, of the Barcelona Supercomputing Center, in Spain, one of the developers of the TIGER portal.







Today's News

October 13, 2021

Scientists discover a highly potent antibody against SARS-CoV-2

Genetic study explores how human pregnancy is unique

Chemists discover faster-acting forms of insecticide imidacloprid

Researchers say fossil shows humans, dogs lived in C. America in 10,000 BC

Antiviral compound blocks SARS-CoV-2 from entering cells

Researchers identify universal laws in the turbulent behavior of active fluids

Brain damage caused by long stays in space

Study explores adaptation in island, mainland anoles

ESO images some of the biggest asteroids in our Solar System

Power walk: Engineers develop powered exoskeleton to help amputees walk with less effort

New scientific resource will help uncover the genetic underpinnings of type 2 diabetes

Lightning strikes may trigger short-term thinning in the ozone layer

Few adverse health effects in wildlife exposed to low levels of radiation from the Fukushima nuclear accident

Teaching ancient brains new tricks: New research shows how modern physicists think

Precision medicine data dive shows water pill may be viable to test as Alzheimer's treatment

Research points to a strategy for overcoming colorectal cancers' immunotherapy resistance

To probe an unexplored space of hard problems, researchers play the devil's advocate

Study sheds light on photosynthesis in iron-low leaves



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful