Established in 2020 Wednesday, April 17, 2024


Over a thousand cosmic explosions detected in 47 days
FAST catches a real pulse from FRB 121102. Image courtesy: NAOC.



BEIJING.- An international research team led by Prof. Li Di and Dr. Wang Pei from National Astronomical Observatories of Chinese Academy of Sciences caught an extreme episode of cosmic explosions from Fast Radio Burst (FRB) 121102, using the Five-hundred-meter Aperture Spherical radio Telescope (FAST). A total of 1,652 independent bursts were detected within 47 days starting Aug. 29, 2019 (UT).

It is the largest set of FRB events so far, more than the number reported in all other publications combined. Such a burst set allows for the determination, for the first time, of the characteristic energy and energy distribution of any FRB, thus shedding light on the central engine powering FRBs.

These results were published in Nature on Oct. 13, 2021.

FRBs were first detected in 2007. These cosmic explosions can be as short as one-thousandth of a second while producing one year's worth of the Sun's total energy output. The origin of FRBs is still unknown. Although even aliens have been considered in models for FRBs, natural causes are clearly favored by the observations. The recent focuses include exotic hyper-magnetized neutron stars, black holes, and cosmic strings left over from the Big Bang.

Scientists have found that a small fraction of FRBs repeat. This phenomenon facilitates follow-up studies, including localization and identification of FRBs' host galaxies.




FRB 121102 is the first known repeater and the first well-localized FRB. Scientists have identified its origin in a dwarf galaxy. In addition, this FRB is clearly associated with a persistent radio source. Both clues are crucial to solving the cosmic mystery of FRBs. The behavior of FRB 121102 is hard to predict and commonly described as "seasonal."

While testing the FAST FRB backend during the commissioning phase, the team noticed that FRB 121102 was acting up with frequent bright pulses. Between Aug. 29 and Oct. 29, 2019, 1,652 independent burst events were detected in a total of 59.5 hours. While the burst cadence varied during the series, 122 bursts were seen during the peak hour, corresponding to the highest event rate ever observed for any FRB.

Such high cadence facilitates a statistical study of these FRB bursts. The researchers found a clear characteristic energy of E0= 4.8 × 1037 erg, below which the generation of the bursts became less efficient. The burst energy distribution can be adequately described as bimodal, namely, a log-normal function for low E bursts and a Lorentz function for high E bursts, implying that weaker FRB pulses may be stochastic in nature and the stronger ones involve a ratio between two independent quantities.

"The total energy of this burst set already adds up to 3.8% of what is available from a magnetar and no periodicity was found between 1 ms and 1000 s, both of which severely constrains the possibility that FRB 121102 comes from an isolated compact object," said Dr. Wang.

More than six new FRBs have been discovered through the Commensal Radio Astronomy FAST Survey, including one new 121102-like repeater. "As the world's largest antenna, FAST's sensitivity proves to be conducive to revealing intricacies of cosmic transients, including FRBs," said Prof. LI.

This project has been part of a long-running collaboration since the commissioning phase of the FAST telescope. Major partner institutions include Guizhou Normal University, University of Nevada Las Vegas, Cornell University, Max-Planck-Institut fuer Radioastronomie, West Virginia University, CSIRO, University of California Berkeley, and Nanjing University.







Today's News

October 15, 2021

Holey metalens! New metalens focuses light with ultra-deep holes

Humans enjoyed blue cheese and beer 2,700 years ago: study

Over a thousand cosmic explosions detected in 47 days

Discovery of new role for brain's immune cells could have alzheimer's implications

Did Venus ever have oceans?

HKUST research shows growing dominance of diatom algae in the Pearl River Estuary

How many people get 'long COVID?' More than half, researchers find

Moderna or Pfizer booster works better for people vaccinated with J&J: study

Cellular environments shape molecular architecture

Solving mystery of rare cancers directly caused by HIV

New clues toward treating pediatric brain tumors harboring epigenetic mutation

New proteins enable scientists to control cell activities

New test rapidly detects bacteria associated with greater risk of preterm birth

How the Sun's magnetic forces arrange gas particles

Did a black hole eating a star generate a neutrino? Unlikely, new study shows

Liquid metal proven to be cheap and efficient CO2 converter

Fluorescent spray lights up tumors for easy detection during surgery

DNA reveals how ice ages affected African rainforests



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful