Established in 2020 Wednesday, April 17, 2024


Developing the next generation of artificial vision aids
A new technology solution which will provide low-power systems for use in bionic eyes, has been developed by Professor Richard Fu. Image courtesy: Northumbria University.



NEWCASTLE.- A new technology solution which will provide low-power systems for use in bionic eyes, has been jointly developed by academics from the Harbin Institute of Technology in China and Northumbria University.

Working in partnership with a research group led by Professor PingAn Hu from the Harbin Institute, Northumbria's Professor Richard Fu described their newly developed method for controlling the artificial synaptic devices used in bionic retinas, robots and visual protheses, as a "significant breakthrough."

The team discovered that injecting elements of the soft metal, indium, into a two-dimensional (2D) material called molybdenum disulphide (MoS2), could improve electrical conductivity and reduce power consumption of the optical synapses used in the development of bionic eyes.

The technology was then tested within the structure of an electronic retina and found to produce the high-quality image sensing functions required.

The team's work has been published in a paper called "Ultralow Power Optical Synapses Based on MoS2 Layers by Indium-Induced Surface Charge Doping for Biomimetic Eyes," in the scientific journal, Advanced Materials.

Professor Fu, who is an expert in shape memory, piezoelectric thin films, nano-materials and nanodevices, explained: "The current visual systems are based on physically separated sensors, memories and processing units. These systems often have high power consumption and difficulties of performing complex image learning and processing tasks. Therefore, our newly developed method is of great significance for the next generation artificial visual systems."

Bionic eye implants work inside the existing eye structures or in the brain. They are designed to achieve functional vision goals—as opposed to physical, cosmetic ones. Several bionic eye implants are in development, but currently very few are available, and are suitable only for blindness caused by specific eye diseases. However, as research continues, more and more people may soon benefit from high-tech bionic eyes.

Professor Fu's innovative ideas have already contributed to advances in piezoelectric materials-based biosensing and diagnostic tools, cell patterning and manipulation. He also has an international reputation for his work around advancement of shape memory thin films and polymers used in microsurgery and drug delivery. He has developed nano-structured smart materials for gas sensing and renewable energy applications.

A Professor in Smart Materials and Microsystems, Professor Fu, works within Northumbria's department of Mathematics, Physics and Electrical Engineering.







Today's News

December 27, 2021

Earth's first-known giant was as big as a sperm whale

Researchers develop new measurements for designing cooler electronics

Developing the next generation of artificial vision aids

Flexible tentaclelike robotic manipulators inspired by nature

Research indicates that wolves might help moose avoid acquiring a deadly deer parasite

Quantum marbles in a bowl of light

Plant scientists find recipe for anti-cancer compound in herbs

Mountain spring water isn't as clean as you think it is

Optics and photonics: Miniaturization of diffusers for new applications

Rewilding the Arctic with mammals likely to be ineffective in slowing climate change impact

Parkinson's protein blueprint could help fast-track new treatments

How neurons that wire together fire together

Homing in on shared network of cancer genes

Flexibility may be the key to potent peptides for treating diabetes

Coating surfaces with a thin layer of copper has the potential to kill the virus causing COVID-19 faster

Researchers identify mechanism that explains how tissues form complex shapes that enable organ function

New materials for quantum technologies

Dominant Alpha variant evolved to evade our innate immune system



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful