Established in 2020 Wednesday, April 17, 2024


Superbug MRSA arose in hedgehogs long before clinical use of antibiotics
Scientists have found evidence that a type of the antibiotic resistant superbug MRSA arose in nature long before the use of antibiotics in humans and livestock, which has traditionally been blamed for its emergence. Image: Alexas_Fotos, Unsplash.



CAMBRIDGE.- Staphylococcus aureus first developed resistance to the antibiotic methicillin around 200 years ago, according to a large international collaboration including the University of Cambridge, the Wellcome Sanger Institute, Denmark’s Serum Statens Institut and the Royal Botanic Gardens, Kew, which has traced the genetic history of the bacteria.

They were investigating the surprising discovery - from hedgehog surveys from Denmark and Sweden - that up to 60% of hedgehogs carry a type of MRSA called mecC-MRSA. The new study also found high levels of MRSA in swabs taken from hedgehogs across their range in Europe and New Zealand.

The study was published in the journal Nature.

The researchers believe that antibiotic resistance evolved in Staphylococcus aureus as an adaptation to having to exist side-by-side on the skin of hedgehogs with the fungus Trichophyton erinacei, which produces its own antibiotics.

The resulting methicillin-resistant Staphylococcus aureus is better known as the superbug MRSA. The discovery of this centuries-old antibiotic resistance predates antibiotic use in medical and agricultural settings.

“Using sequencing technology we have traced the genes that give mecC-MRSA its antibiotic resistance all the way back to their first appearance, and found they were around in the nineteenth century,” said Dr Ewan Harrison, a researcher at the Wellcome Sanger Institute and University of Cambridge and a senior author of the study.

He added: “Our study suggests that it wasn’t the use of penicillin that drove the initial emergence of MRSA, it was a natural biological process. We think MRSA evolved in a battle for survival on the skin of hedgehogs, and subsequently spread to livestock and humans through direct contact.”




Antibiotic resistance in bugs causing human infections was previously thought to be a modern phenomenon, driven by the clinical use of antibiotics. Misuse of antibiotics is now accelerating the process, and antibiotic resistance is rising to dangerously high levels in all parts of the world.

Since almost all the antibiotics we use today arose in nature, the researchers say it is likely that resistance to them already exists in nature too. Overuse of any antibiotic in humans or livestock will favour resistant strains of the bug, so it is only a matter of time before the antibiotic starts to lose its effectiveness.

“This study is a stark warning that when we use antibiotics, we have to use them with care. There’s a very big wildlife ‘reservoir’ where antibiotic-resistant bacteria can survive – and from there it’s a short step for them to be picked up by livestock, and then to infect humans,” said Professor Mark Holmes, a researcher in the University of Cambridge’s Department of Veterinary Medicine and a senior author of the report.

In 2011, previous work led by Professor Holmes first identified mecC -MRSA in human and dairy cow populations. At the time it was assumed the strain had arisen in the cows because of the large amount of antibiotics they are routinely given.

MRSA was first identified in patients in 1960, and around 1 in 200 of all MRSA infections are caused by mecC-MRSA. Due to its resistance to antibiotics, MRSA is much harder to treat than other bacterial infections. The World Health Organization now considers MRSA one of the world’s greatest threats to human health. It is also a major challenge in livestock farming.

The findings are not a reason to fear hedgehogs, say the researchers: humans rarely get infections with mecC-MRSA, even though it has been present in hedgehogs for more than 200 years.

”It isn’t just hedgehogs that harbour antibiotic-resistant bacteria - all wildlife carries many different types of bacteria, as well as parasites, fungi and viruses,” said Holmes.

He added: “Wild animals, livestock and humans are all interconnected: we all share one ecosystem. It isn’t possible to understand the evolution of antibiotic resistance unless you look at the whole system.”

This research was funded by the Medical Research Council.







Today's News

January 6, 2022

Physicists watch as ultracold atoms form a crystal of quantum tornadoes

Early data for multivariant COVID-19 vaccine booster shows promise

Discovery of the least 'metallic' stellar structure in the Milky Way

Research reveals ancient Maya lessons on surviving drought

Superbug MRSA arose in hedgehogs long before clinical use of antibiotics

Gravitational action of sun and moon influences behavior of animals and plants, study shows

Research team demonstrates MRI scan in an ambulance

With the right balance against Omicron

Coherent interstellar magnetic field detected

Autism screenings in early intervention services can increase diagnoses by 60 percent

Climate change, invasive species found to drive native trout declines

New research shows gene exchange between viruses and hosts drives evolution

Mass die-off of Magellanic penguins seen during 2019 heat wave

Real-time alert system heralds new era in fast radio burst research

COVID-19 vaccine does not increase risk of preterm birth

Hereditary colon cancer more common in Indonesia, says new study

Exploring growth within a confined space

Growth dynamics of giant kelp studied using novel remote sensing data



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful