Established in 2020 Wednesday, April 17, 2024


Research lights up process for turning CO2 into sustainable fuel
Reactor where the catalyst is tested for turning CO2 to methanol. Image courtesy: University of Nottingham.



NOTTINGHAM.- Researchers have successfully transformed CO2 into methanol by shining sunlight on single atoms of copper deposited on a light-activated material, a discovery that paves the way for creating new green fuels.

An international team of researchers from the University of Nottingham's School of Chemistry, University of Birmingham, University of Queensland, and University of Ulm have designed a material made up of copper anchored on nanocrystalline carbon nitride.

The copper atoms are nested within the nanocrystalline structure, which allows electrons to move from carbon nitride to CO2, an essential step in the production of methanol from CO2 under the influence of solar irradiation. The research has been published in the Sustainable Energy & Fuels journal.

In photocatalysis, light is shone on a semiconductor material that excites electrons, enabling them to travel through the material to react with CO2 and water, leading to a variety of useful products, including methanol, which is a green fuel. Despite recent progress, this process suffers from a lack of efficiency and selectivity.

Carbon dioxide is the greatest contributor to global warming. Although it is possible to convert CO2 to useful products, traditional thermal methods rely on hydrogen sourced from fossil fuels. It is important to develop alternative methods based on photo- and electrocatalysis, taking advantage of the sustainable solar energy and abundance of omnipresent water.

Dr. Madasamy Thangamuthu, a research fellow in the School of Chemistry, University of Nottingham, who co-led the research team, said, "There is a large variety of different materials used in photocatalysis. It is important that the photocatalyst absorbs light and separates charge carriers with high efficiency. In our approach, we control the material at the nanoscale. We developed a new form of carbon nitride with crystalline nanoscale domains that allow efficient interaction with light as well as sufficient charge separation."

The researchers devised a process of heating carbon nitride to the required degree of crystallinity, maximizing the functional properties of this material for photocatalysis. Using magnetron sputtering, they deposited atomic copper in a solventless process, allowing intimate contact between the semiconductor and metal atoms.

Tara LeMercier, a Ph.D. student who carried out the experimental work at the University of Nottingham School of Chemistry, said, "We measured the current generated by light and used it as a criterion to judge the quality of the catalyst. Even without copper, the new form of carbon nitride is 44 times more active than traditional carbon nitride."

"However, to our surprise, the addition of only 1 mg of copper per 1 g of carbon nitride quadrupled this efficiency. Most importantly, the selectivity changed from methane, another greenhouse gas, to methanol, a valuable green fuel."

Professor Andrei Khlobystov, School of Chemistry, University of Nottingham, said, "Carbon dioxide valorization holds the key for achieving the net-zero ambition of the UK. It is vitally important to ensure the sustainability of our catalyst materials for this important reaction. A big advantage of the new catalyst is that it consists of sustainable elements—carbon, nitrogen, and copper—all highly abundant on our planet."

This invention represents a significant step towards a deep understanding of photocatalytic materials in CO2conversion. It opens a pathway for creating highly selective and tunable catalysts where the desired product could be dialed up by controlling the catalyst at the nanoscale.







Today's News

March 27, 2024

For the first time, scientists take an atomic freeze-frame of liquid water

Breakthrough antibiotic shows promise against obstinate mycobacterial infections

Mitochondrial DNA fragment losses predict Parkinson's disease before symptoms appear

Persian plateau unveiled as crucial hub for early human migration out of Africa

Electrochemistry helps clean up electronic waste recycling, precious metal mining

Scientists identify a key driver of myelin repair

In paleontology, correct names are keys to accurate study

Artificial nanofluidic synapses can store computational memory

Stem cell model offers first glimpse of early human development

Music and genomes: Beethoven's genes put to the test

Gotta go? New bladder device lets you know

First observation of photons-to-taus in proton-proton collisions

Engineering household robots to have a little common sense

With a new experimental technique, MIT engineers probe the mechanisms of landslides and earthquakes

Sleeping supermassive black holes awakened briefly by shredded stars

Developmental crossroads in the brain: How proteins direct nerve cell precursors to turn into specialized neurons

Micro-Lisa: Making a mark with novel nano-scale laser writing

Researchers challenge the limits of molecular memory, opening the door to the development of molecular chips

Discovery of amino acid unveils how light makes stomata open in plants

Testing begins on sensitive neutrino detector for nonproliferation and fundamental physics

Elusive 3D printed nanoparticles could lead to new shapeshifting materials

Research lights up process for turning CO2 into sustainable fuel

Novel protective antibody target identified against Crimean-Congo hemorrhagic fever virus

Tiniest 'starquakes' ever detected



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful