Established in 2020 Wednesday, April 17, 2024


Researchers discover previously unknown gene that indirectly promotes photosynthesis in blue-green algae
Cyanobacteria in high-density-cultures. Image courtesy: Alexander Kraus.



FREIBURG.- Cyanobacteria—also called blue-green algae—are known as the "plants of the ocean" because they carry out photosynthesis on a gigantic scale, produce oxygen and extract the greenhouse gas CO2 from the environment. However, to do this they need additional nutrients such as nitrogen.

A team headed by biologist Prof. Dr. Wolfgang R. Hess, professor of genetics at the University of Freiburg, has discovered a previously unknown gene that plays a key role in the coordination of the nitrogen and carbohydrate metabolism. With it, cyanobacteria indirectly regulate the growth of microorganisms that promote photosynthesis.

"Our work shows that there are numerous previously unknown interdependencies even between the smallest organisms in the environment and that many previously unknown genes play a part in this," says Hess. The results have been published in Nature Communications.

Balance between primary nutrients

The amounts of carbon (CO2) and nitrogen available for plants, algae and cyanobacteria are not always the same. For photosynthesis, a physiologically relevant balance between these two primary nutrients is of huge importance. In the genetic data of cyanobacteria, Alexander Kraus, doctoral student with Wolfgang R. Hess at the University of Freiburg, has now discovered and characterized a gene that plays a key part in this context: the gene encodes a protein named NirP1. This is only produced if the cells identify a deficiency of carbon in relation to the available nitrogen.

The protein is itself too small to act as an enzyme like many other proteins. Working with Dr. Philipp Spät and Prof. Dr. Boris Maček from the Proteome Center at the University of Tübingen, the researchers were however able to discover that NirP1 can bond permanently with an enzyme that would normally convert nitrite into ammonium.

NirP1 prevents this and thus ensures that nitrite accumulates in the cells; this is then followed by further massive metabolic changes, which were analyzed in detail in collaboration with Prof. Dr. Martin Hagemann 's team at the University of Rostock.

Finally, the cyanobacteria begin to export nitrite to the environment, where the additional nitrite stimulates the growth of useful microorganisms, and so a microbiome that is beneficial to the photosynthesis of the cyanobacteria.

The results suggest ideas for ongoing research into the interactions between microorganisms and the role of this regulating gene which was previously little known, says Hess. "In addition, small protein regulators like NirP1 could in future be deployed in 'green' and 'blue' biotechnology for targeted control of the metabolism."







Today's News

April 17, 2024

Scientists identify cell vulnerability 'fingerprint' related to Parkinson's, Lewy body dementia

First insights into the genetic bottleneck characterizing early sheep husbandry in the Neolithic period

A magnetic nanographene butterfly poised to advance quantum technologies

Digging up new species of Australia and New Guinea's giant fossil kangaroos

Research team shows island bats are valuable allies for farmers

A frustrated jet in the centre of the Milky Way

First curved data link side-steps key 6G wireless challenge

Advance in light-based computing shows capabilities for future smart cameras

Uranium-immobilizing bacteria in clay rock: Exploring how microorganisms can influence the behavior of radioactive waste

New research could enable more-and more efficient-synthesis of metastable materials

Researchers develop stretchable quantum dot display

Astrophysicists solve mystery of heart-shaped feature on the surface of Pluto

Tropical forests can't recover naturally without fruit eating birds, carbon recovery study shows

Scientists share single-cell atlas for the highly regenerative worm, Pristina leidyi

Advance in immune cell screening uncovers receptors that target prostate cancer

"Nanostitches" enable lighter and tougher composite materials

Carbon beads help restore healthy gut microbiome and reduce liver disease progression, researchers find

Targeted liver cancer treatment kills cancer cells and could cut chemo side effects

Giant rogue waves: Southern Ocean expedition reveals wind as key cause

A balanced quantum Hall resistor provides a new measurement method

Newly sequenced genome reveals coffee's prehistoric origin story, and its future under climate change

Researchers discover previously unknown gene that indirectly promotes photosynthesis in blue-green algae

Neutron scattering study points the way to more powerful lithium batteries

Crucial connection for 'quantum internet' made for the first time



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful