Established in 2020 Thursday, November 26, 2020


World's smallest atom-memory unit created
The race to make smaller chips and components is all about power and convenience. With smaller processors, you can make more compact computers and phones. Image courtesy: The University of Texas at Austin.



AUSTIN, TX.- Faster, smaller, smarter and more energy-efficient chips for everything from consumer electronics to big data to brain-inspired computing could soon be on the way after engineers at The University of Texas at Austin created the smallest memory device yet. And in the process, they figured out the physics dynamic that unlocks dense memory storage capabilities for these tiny devices.

The research published recently in Nature Nanotechnology builds on a discovery from two years ago, when the researchers created what was then the thinnest memory storage device. In this new work, the researchers reduced the size even further, shrinking the cross section area down to just a single square nanometer.

Getting a handle on the physics that pack dense memory storage capability into these devices enabled the ability to make them much smaller. Defects, or holes in the material, provide the key to unlocking the high-density memory storage capability.

“When a single additional metal atom goes into that nanoscale hole and fills it, it confers some of its conductivity into the material, and this leads to a change or memory effect,” said Deji Akinwande, professor in the Department of Electrical and Computer Engineering.

Though they used molybdenum disulfide – also known as MoS2 – as the primary nanomaterial in their study, the researchers think the discovery could apply to hundreds of related atomically thin materials.




The race to make smaller chips and components is all about power and convenience. With smaller processors, you can make more compact computers and phones. But shrinking down chips also decreases their energy demands and increases capacity, which means faster, smarter devices that take less power to operate.

“The results obtained in this work pave the way for developing future generation applications that are of interest to the Department of Defense, such as ultra-dense storage, neuromorphic computing systems, radio-frequency communication systems and more,” said Pani Varanasi, program manager for the U.S. Army Research Office, which funded the research.

The original device – dubbed “atomristor” by the research team – was at the time the thinnest memory storage device ever recorded, with a single atomic layer of thickness. But shrinking a memory device is not just about making it thinner but also building it with a smaller cross-sectional area.

“The scientific holy grail for scaling is going down to a level where a single atom controls the memory function, and this is what we accomplished in the new study,” Akinwande said.

Akinwande’s device falls under the category of memristors, a popular area of memory research, centered around electrical components with the ability to modify resistance between its two terminals without a need for a third terminal in the middle known as the gate. That means they can be smaller than today’s memory devices and boast more storage capacity.

This version of the memristor – developed using the advanced facilities at the Oak Ridge National Laboratory – promises capacity of about 25 terabits per square centimeter. That is 100 times higher memory density per layer compared with commercially available flash memory devices.





Today's News

November 22, 2020

NUS researchers target 'undercover' gene that helps cancer cells proliferate

Researchers develop a new test to better assess environmental impact of substances

European Commission approves Supemtek for the prevention of influenza in adults aged 18 years and older

Identifying the structure and function of a brain hub

Arthritis drug effective in treating sickest COVID-19 patients

FDA grants priority review for avalglucosidase alfa, a potential new therapy for Pompe disease

Ancient crocodiles' family tree reveals unexpected twist and turns

A neural network learns when it should not be trusted

Alternative gene control mechanism based on organization of DNA within nucleus

A pressure sensor at your fingertips

Rilzabrutinib granted FDA Fast Track Designation for treatment of immune thrombocytopenia

Satellite to track rising seas as climate warms

World's smallest atom-memory unit created

Versatile building blocks make structures with surprising mechanical properties

Dieting and weight worries on rise among teens



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful