Established in 2020 Wednesday, April 17, 2024


Silicon nanowire offers efficient high-temperature thermoelectric system
Silicon nanowire prototype being prepared for property measurements in a cryostat. Image courtesy: Lin Yang, Berkeley Lab.



BERKELEY, CA.- With a $2-million grant from the California Energy Commission (CEC), Berkeley Lab has developed a cost-effective thermoelectric waste-heat recovery system to reduce electricity-related carbon emissions. Industries such as the glass, cement, power, and steel sectors expel a huge amount of high-temperature waste heat. Converting this waste heat cost effectively to electricity can provide a zero-carbon source of energy.

The system is based on silicon nanowires developed at Berkeley Lab several years ago. "Using an abundant and inexpensive material like silicon to develop thermoelectric generators will increase market penetration while helping industries minimize energy losses," said Berkeley Lab scientist Vi Rapp.

The funding comes from CEC's Electric Program Investment Charge (EPIC) program, which funds clean energy innovation to reduce pollution, foster economic development, and meet the state's climate goals. Worldwide, approximately 45 quads of energy is rejected as waste heat at high temperatures (greater than 300 degrees Celsius) every year. For comparison, the United States uses about 100 quads of primary energy each year.




More than 10 years ago, Berkeley Lab research was focused on low-temperature conversion of waste heat to electricity—a great technology advancement at the time. Because converting waste heat at high temperatures is cost-effective and competes with other zero-carbon and waste heat conversion technologies, high-temperature thermoelectric conversion has been the next sought-after technology advance.

The CEC funded a Berkeley Lab and Stanford team to find a promising solution, and their findings were recently published in the journal Nature Communications. The team developed a technology that uses wafer-scale arrays of porous silicon nanowires with ultra-thin silicon crystallite that allows for an 18 times greater "figure of merit" (an expression representing performance or efficiency) than other high-temperature or bulk silicon thermoelectric technologies.

"High temperatures degrade materials," said Ravi Prasher, the project lead and a scientist in Berkeley Lab's Energy Technologies Area. "So we looked at silicon, which is abundant and stable, as well as cheap and reliable. Since bulk silicon does not have good thermoelectric properties, we use silicon to create nanowires—then the physics changes."

Prasher said the next steps will be working to scale up the system, producing nanowires to test in actual devices.







Today's News

August 18, 2021

The tomb of Marcus Venerius Secundio discovered at Porta Sarno with mummified human remains

New thermal wave diagnostic technique advances battery performance testing

Polymers 'click' together using green chemistry

Silicon nanowire offers efficient high-temperature thermoelectric system

First genetic sequencing of Brazilian pit viper is completed

Nanocluster discovery will protect precious metals

Study shows building bonds between males leads to more offspring for chimpanzees

Angry bees produce better venom

Nearby star-forming region yields clues to the formation of our solar system

Robotic floats provide new look at ocean health and global carbon cycle

Loss of placental hormone linked to brain and social behavior changes

Small protein protects pancreatic cells in model of type 1 diabetes

Benefits of time-restricted eating depend on age and sex

Ice formation on surfaces enhanced via a non-classical nucleation process

Mosquito larvae are surprisingly complex

Simulating nuclear cloud rise anywhere, anytime

Does metabolic rate drive population size?

The Arctic Ocean's deep past provides clues to its imminent future



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful