Established in 2020 Wednesday, April 17, 2024


Sequencing multiple RNA base modifications simultaneously: A new era of RNA biology
Operating principle of single-molecule quantum sequencing to determine base sequences and identify chemically modified base molecules. Image courtesy: Takahito Ohshiro et al.



SUITA.- After a gene is transcribed into RNA, modifications can occur to the subunits or "bases" that make up the RNA molecule, which can affect its structure and function. The study of these changes is known as "epitranscriptomics." These base modifications can occur to most types of RNA molecule, including microRNAs.

Now, a research group at Osaka University, led by Professor Masateru Taniguchi and Professor Hideshi Ishii, have sequenced a microRNA that is a marker for "refractory" gastrointestinal cancer, which does not respond to treatment. They were able to directly detect two types of chemical base modifications simultaneously using a single-molecule quantum sequencer.




MicroRNAs are small non-coding RNA molecules that play a regulatory role by interfering with and suppressing the expression of a gene. Base modifications to microRNAs can affect how they are processed and the efficiency by which they can suppress their targets, altering their function. These modifications are therefore important for understanding the functions of RNAs but have previously proved hard to detect.

The Osaka University team isolated microRNAs from colorectal cancer cells and sequenced single RNA molecules. The quantum sequencer uses electricity to distinguish bases based on their unique electrical conductance values, which measure the ability of the molecules to conduct an electrical current. Because chemical modifications alter the electrical conductance of the bases, this method could potentially be used to identify any kind of nucleotide modification. Here, the researchers focused on two common modifications, m6A and 5mC, involving the addition of a methyl group to an adenosine (A) nucleotide and a cytidine (C) nucleotide, respectively.

Using the single-molecule quantum sequencer, the team observed modification ratios that were comparable to those calculated using other methods that are only able to detect a single kind of modification at a time. Not only that, but the results they observed suggest that the two types of modification were able to influence each other. The presence of m6A modification seemed to facilitate 5mC modification. "The rate of 5mC methylation is generally affected by the activities of methylation and demethylation enzymes, and so our results imply that the activities of these enzymes can be promoted or deactivated by m6A modifications," explains Takahito Ohshiro, lead author of the paper.

This work provides a robust new tool for sequencing various types of RNA base modifications. "Our method can be used for comprehensive analysis and detection of methylation sites in the epitranscriptome," says corresponding author Masateru Taniguchi, "which will allow increased understanding of these methylation events and their mechanisms, changing the landscape of RNA biology and ushering in a new era."







Today's News

October 1, 2021

New photoelectric implant controls the activity of spinal neurons

Seven symptoms jointly predict COVID-19 diagnosis

UChicago scientists create material that can both move and block heat

Extending LIGO's reach into the cosmos

Children with epilepsy to benefit from wearable brain scanner

Sequencing multiple RNA base modifications simultaneously: A new era of RNA biology

New analytical technique helps researchers spot subtle differences in subcellular chemistry

Swimming mechanics of the gossamer worm revealed

'Planet confusion' could slow Earth-like exoplanet exploration

US Army backs 'sleeping cap' to help brains take out the trash

First mixopterid eurypterids found in China

Extending the power of attosecond spectroscopy

Scientists race to save Florida coral reef from mysterious disease

Stanford exoskeleton research demonstrates the importance of training

Researchers discover unknown childhood genetic condition and its potential cure

Sunlight filtering through Venus' clouds could support Earth-like photosynthesis in the cloud layers

Tulane scientists to use recycled glass 'sand' to prevent coastal erosion

Scientists target next pandemic with 'map' to victory over viruses



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful