Established in 2020 Wednesday, April 17, 2024


How to program DNA robots to poke and prod cell membranes
Image shows how to build DNA ‘nanostructures’ to effectively manipulate synthetic liposomes. (Left) DNA strands are woven to bind a DNA nanotile (blue) to the liposome (orange) and then (right) release it when it is given a specific signal. Graphic courtesy: Dr Jasleen Daljit Singh and Dr Jon Berengut, University of Sydney.



SYDNEY.- Scientists have worked out how to best get DNA to communicate with membranes in our body, paving the way for the creation of ‘mini biological computers’ in droplets that have potential uses in biosensing and mRNA vaccines.

UNSW’s Dr Matthew Baker and the University of Sydney’s Dr Shelley Wickham co-led the study, published recently in Nucleic Acids Research.

It discovered the best way to design and build DNA ‘nanostructures’ to effectively manipulate synthetic liposomes – tiny bubbles which have traditionally been used to deliver drugs for cancer and other diseases.

By modifying the shape, porosity and reactivity of liposomes, there are far greater applications, such as building small molecular systems that sense their environment and respond to a signal to release a cargo, such as a drug molecule when it nears its target.

Lead author Dr Matt Baker from UNSW’s School of Biotechnology and Biomolecular Sciences says the study discovered how to build “little blocks” out of DNA and worked out how best to label these blocks with cholesterol to get them to stick to lipids, the main constituents of plant and animal cells.

“One major application of our study is biosensing: you could stick some droplets in a person or patient, as it moves through the body it records local environment, processes this and delivers a result so you can 'read out' the local environment,” Dr Baker says.

Liposome nanotechnology has shot into prominence with the use of liposomes alongside RNA vaccines such as the Pfizer and Moderna COVID-19 vaccines.

“This work shows new ways to corral liposomes into place and then pop them open at just the right time,” Dr Baker says.

“What is better is because they are built from the bottom-up out of individual parts we design, we can easily bolt in and out different components to change the way they work.

Previously scientists struggled to find the right buffer conditions for lipids and liposomes to make sure that their DNA ‘computers’ actually stuck to liposomes.

They also struggled with the best way to decorate the DNA with cholesterols so that it would not only go to the membrane but stay there as long as was needed.

“Is it better at the edge? The centre? Heaps of them? Few of them? Close as possible to structure, or far as possible?” Dr Baker says.

“We looked at all these things and showed that we could make good conditions for DNA structures to bind to liposomes reliably and 'do something'.”

Dr Baker says membranes are critical in life as they allow compartments to form and therefore different types of tissue and cells to be separated.

“This all relies on membranes being generally quite impermeable,” he says.

“Here we have built totally new DNA nanotechnology where we can punch holes in membranes, on demand, to be able to pass important signals across a membrane.

“This is ultimately the basis in life of how cells communicate with each other, and how something useful can be made in one cell and then exported to be used elsewhere.”

Alternately, in pathogens, membranes can be disrupted to destroy cells, or viruses can sneak into cells to replicate themselves.

The scientists will next work on how to control DNA-based pores that can be triggered with light to develop synthetic retinas out of entirely novel parts.







Today's News

October 18, 2021

Scientists find evidence the early solar system harbored a gap between its inner and outer regions

Energy-efficient AI detects heart defects

Lewy body dementia exacerbated by immune response

The butterfly effect: How Torres Strait butterflies could help conservation efforts

Russians return to Earth after filming first movie in space

Cooling radio waves to their quantum ground state

Mammals on the menu: Snake dietary diversity exploded after mass extinction 66 million years ago

Eight months later: Researchers compare immune responses elicited by three COVID-19 vaccines

Evidence of superionic ice provides new insights into the unusual magnetic fields of Uranus and Neptune

Only one in four Western Roman emperors died of natural causes

Study shows fragile X treatment can incur resistance, suggests ways around it

Team demonstrates great promise of all-inorganic perovskite solar cells for improving solar cell efficiency

Scientists uncover a circadian rhythm in heart cells that affects their daily function

How to make an exosuit that helps with awkward lifts

Quick detection of uranium isotopes helps safeguard nuclear materials

How to program DNA robots to poke and prod cell membranes

Misinformation on stem cell treatments for COVID-19 linked to overhyped science, researchers argue

Sea otter populations found to increase eelgrass genetic diversity



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful