Established in 2020 Wednesday, April 17, 2024


Seeing more with a needle-shaped laser
Traditional photoacoustic microscopy (PAM) (left) compared to needle-shaped photoacoustic microscopy (NB-PAM) (right). In traditional PAM, only objects near the focal point of the laser are imaged sharply. In NB-PAM, the longer, narrower beam allows objects over a greater range of depth to be clearly imaged. Image courtesy: Caltech.



PASADENA, CA.- Photoacoustic microscopy (PAM) is a relatively new imaging technique that uses laser light to induce ultrasonic vibrations in tissue. These ultrasonic vibrations, along with a computer that processes them, can then be used to create an image of the structures of the tissue in much the same way ultrasound imaging works.

In the last few years, Lihong Wang, Caltech's Bren Professor of Medical Engineering and Electrical Engineering, has developed PAM technologies that can image changing blood flow in the brain, detect cancerous tissue, and even identify individual cancer cells.

However, one limitation of high-resolution (i.e., optical-resolution) PAM has been its narrow depth of field, meaning that it can only focus on a thin layer (approximately 30 micrometers, or about the length of one skin cell, with one to two micrometers of resolution) of tissue at a time. To see something above or below the plane that the device is viewing, it needs to refocus above or below that plane. For comparison, imagine a person putting on reading glasses to do a crossword puzzle.

In a new paper in the journal Nature Photonics, Wang and his research team show how they developed a new variant of PAM called needle-shaped beam photoacoustic microscopy, or NB-PAM, which that has a depth of field nearly 14 times greater than what was achievable before. This means NB-PAM can create 3-D imagery of samples without refocusing and better image samples with uneven surfaces.

"Some applications, such as studying tissue samples without needing to use a microscope slide, require imaging of uneven surfaces at high spatial resolution," says Rui Cao, lead author and postdoctoral scholar research associate in medical engineering. "Conventional PAM grapples with the trade-off between resolution and depth of field, which has been overcome by our new technology."

NB-PAM improves its depth of field over its related PAM technologies by using a beam of laser light that is longer and thinner, hence "needle shaped." This change in the optical characteristics of the beam avoids some of the drawbacks associated with other attempts to increase the depth of field of PAM technology, such as working more slowly, or requiring more computer processing power.

This needle-shaped beam is created using a specialized item known as a diffractive optical element (DOE). To the casual observer, a DOE looks like a tiny sheet of glass, but it is actually a piece of fused silica with precise patterns engraved on its surface. Those patterns reshape the beam of light that is used for imaging, so that it no longer focuses to a sharp point along the propagation axis but is instead drawn out into a long thin neck. Consequently, it is able to clearly image objects over a greater range of depths.

That greater depth of field was demonstrated by the researchers in two ways: imaging fresh organ samples using an ultraviolet laser and imaging in vivo mouse brain vasculature using a blue laser.

"This technology provides new opportunities for studying tissue samples during surgery, which would allow complete removal of cancer cells and maximal preservation of normal ones," says Wang, who is also the Andrew and Peggy Cherng Medical Engineering Leadership Chair; Executive Officer for Medical Engineering. "Translation into the operating room is a natural future avenue of research."

The paper describing NB-PAM, titled "Optical-resolution photoacoustic microscopy with a needle-shaped beam," appears in the December 1 issue of Nature Photonics. Co-authors are Lei Li (PhD '19), Yide Zhang, and Samuel Davis, all postdoctoral scholar research associates in medical engineering; medical engineering graduate student Yilin Luo; Jingjing Zhao and Adam de la Zerda of Stanford University; Lin Du of University of Pennsylvania; and Qifa Zhou and Laiming Jiang of USC.

Funding for the research was provided by the National Institutes of Health.







Today's News

December 4, 2022

Ancient DNA from medieval Germany tells origin story of Ashkenazi Jews

New space instrument to peer at light reflecting from Earth, achieve record accuracy

Researchers discover what causes some icicles to form with ripples

New chip-scale laser isolator opens new research avenues in photonics

Researchers analyze hair to study war trauma among Syrian refugee children

James Webb telescope produces an unparalleled view of the ghostly light in galaxy clusters

Positively charged nanomaterials treat obesity anywhere you want

Wildlife study: Cheetah marking trees are hotspots for communication among other species as well

New potential mechanism for vision loss discovered

An easy way for dairy farmers to reduce their climate impact

Seeing more with a needle-shaped laser

Discovery of a novel quantum state analogous to water that won't freeze

Swan River dolphins form 'bromances' to secure females, study finds

Earthquake lab experiments produce aftershock-like behavior

Amateur scientists have helped astronomers identify nearly a quarter-million galaxies

Study discovers microbial communities shift while a coral 'sleeps' through the winter

Changing the color of quantum light on an integrated chip

Astronomers explore origin of optical variability in emission-line galaxies



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful