Established in 2020 Wednesday, April 17, 2024


Discovery of a novel quantum state analogous to water that won't freeze
Cryostat used to achieve temperatures down to 20 millikelvin. Image courtesy: HZDR/Jürgen Jeibmann.



DRESDEN.- Water that simply will not freeze, no matter how cold it gets—a research group involving the Helmholtz-Zentrum Dresden-Rossendorf has discovered a quantum state that could be described in this way.

Experts from the Institute of Solid State Physics at the University of Tokyo in Japan, Johns Hopkins University in the United States, and the Max Planck Institute for the Physics of Complex Systems (MPI-PKS) in Dresden, Germany, managed to cool a special material to near absolute zero temperature.

They found that a central property of atoms—their alignment—did not "freeze," as usual, but remained in a "liquid" state. The new quantum material could serve as a model system to develop novel, highly sensitive quantum sensors. The team has presented its findings in the journal Nature Physics.

On first sight, quantum materials do not look different from normal substances—but they sure do their own thing: Inside, the electrons interact with unusual intensity, both with each other and with the atoms of the crystal lattice. This intimate interaction results in powerful quantum effects that not only act on the microscopic, but also on the macroscopic scale.

Thanks to these effects, quantum materials exhibit remarkable properties. For example, they can conduct electricity completely loss-free at low temperatures. Often, even slight changes in temperature, pressure, or electrical voltage are enough to drastically change the behavior of the material.

In principle, magnets can also be regarded as quantum materials; after all, magnetism is based on the intrinsic spin of the electrons in the material. "In some ways, these spins can behave like a liquid," explains Prof. Jochen Wosnitza from the Dresden High Field Magnetic Laboratory (HLD) at HZDR. "As temperatures drop, these disordered spins can then freeze, much like water freezes into ice."




For example, certain kind of magnets, so-called ferromagnets, are non-magnetic above their "freezing", or more precisely ordering point. Only when they drop below it can they become permanent magnets.

High-purity material
The international team intended to create a quantum state in which the atomic alignment that is associated with the spins did not order, even at ultracold temperatures—similar to a liquid that will not solidify, even in extreme cold. To achieve this state, the research group used a special material—a compound of the elements, praseodymium, zirconium, and oxygen. They assumed that in this material, the properties of the crystal lattice would enable the electron spins to interact with their orbitals around the atoms in a special way.

"The prerequisite, however, was to have crystals of extreme purity and quality," Prof. Satoru Nakatsuji of the University of Tokyo explains. It took several attempts, but eventually the team was able to produce crystals pure enough for their experiment: In a cryostat, a kind of super thermos flask, the experts gradually cooled their sample down to 20 millikelvin—just one fiftieth of a degree above absolute zero.

To see how the sample responded to this cooling process and inside the magnetic field, they measured how much it changed in length. In another experiment, the group recorded how the crystal reacted to ultrasound waves being directly sent through it.

An intimate interplay
The result: "Had the spins ordered, it should have caused an abrupt change in the behavior of the crystal, such as a sudden change in length," Dr. Sergei Zherlitsyn, HLD's expert in ultrasound investigations, describes. "Yet, as we observed, nothing happened! There were no sudden changes in either length or in its response to ultrasound waves."

The conclusion: The pronounced interplay of spins and orbitals had prevented ordering, which is why the atoms remained in their liquid quantum state—the first time such a quantum state had been observed. Further investigations in magnetic fields confirmed this assumption.

This basic research result could also have practical implications one day: "At some point we might be able to use the new quantum state to develop highly sensitive quantum sensors," Jochen Wosnitza speculates. "To do this, however, we still have to figure out how to generate excitations in this state systematically."

Quantum sensing is considered a promising technology of the future. Because their quantum nature makes them extremely sensitive to external stimuli, quantum sensors can register magnetic fields or temperatures with far greater precision than conventional sensors.







Today's News

December 4, 2022

Ancient DNA from medieval Germany tells origin story of Ashkenazi Jews

New space instrument to peer at light reflecting from Earth, achieve record accuracy

Researchers discover what causes some icicles to form with ripples

New chip-scale laser isolator opens new research avenues in photonics

Researchers analyze hair to study war trauma among Syrian refugee children

James Webb telescope produces an unparalleled view of the ghostly light in galaxy clusters

Positively charged nanomaterials treat obesity anywhere you want

Wildlife study: Cheetah marking trees are hotspots for communication among other species as well

New potential mechanism for vision loss discovered

An easy way for dairy farmers to reduce their climate impact

Seeing more with a needle-shaped laser

Discovery of a novel quantum state analogous to water that won't freeze

Swan River dolphins form 'bromances' to secure females, study finds

Earthquake lab experiments produce aftershock-like behavior

Amateur scientists have helped astronomers identify nearly a quarter-million galaxies

Study discovers microbial communities shift while a coral 'sleeps' through the winter

Changing the color of quantum light on an integrated chip

Astronomers explore origin of optical variability in emission-line galaxies



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful