Established in 2020 Wednesday, April 17, 2024


Using high-precision quantum chemistry to study super-efficient energy transfer in photosynthesis
Image courtesy: Ludwig Maximilian University of Munich.



MUNICH.- Photosynthesis drives all life on Earth. Complex processes are required for the sunlight-powered conversion of carbon dioxide and water to energy-rich sugar and oxygen. These processes are driven by two protein complexes, photosystems I and II. In photosystem I, sunlight is used with an efficiency of almost 100%. Here a complex network of 288 chlorophylls plays the decisive role.

A team led by LMU chemist Regina de Vivie-Riedle has now characterized these chlorophylls with the help of high-precision quantum chemical calculations—an important milestone toward a comprehensive understanding of energy transfer in this system. This discovery may help exploit its efficiency in artificial systems in the future.

The chlorophylls in photosystem I capture sunlight in an antenna complex and transfer the energy to a reaction center. There, the solar energy is used to trigger a redox process—that is to say, a chemical process whereby electrons are transferred. The quantum yield of photosystem I is almost 100%, meaning that almost every absorbed photon leads to a redox event in the reaction center.




Simulation under natural conditions
"Although the complicated energy transfer inside the photosystem has been studied for decades, there is no consensus up to today about the exact mechanism," says de Vivie-Riedle. To gain deeper insights, the researchers simulated the light excitation of all chlorophylls in a model of photosystem I embedded in a lipid membrane. A highly accurate multireference method was used to calculate the electronic excitations. Compared to earlier studies, this approach allows the photosystem I to be described on the basis of state-of-the-art methodology. The complicated calculations were made possible by the supercomputer at the Leibniz Supercomputing Center.

The results of the study, which is featured on the cover of the journal Chemical Science, reveal so-called "red chlorophylls" that absorb light at slightly lower energies than their neighbors due to ambient electrostatic effects. As a result, their absorption spectrum is red-shifted. Analogously, the researchers also identified energy barriers between the antenna complex and the reaction center, among other places. "This seems surprising at first glance because there is no obvious gradient along which energy is transferred from the antenna complex to the reaction center," explains lead author Sebastian Reiter.

Fluctuations overcome energy barriers
Under physiological conditions, however, the entire photosystem I is subject to thermal fluctuations that overcome these energy barriers, as the relative energies of the chlorophylls change with respect to each other. In this way, new pathways into the reaction center can constantly open up, while others close. This, according to the core thesis of the authors, could be the key to the high efficiency of photosystem I.

"Our atomistic simulation of these processes enables a microscopic understanding of the system and its dynamics in its natural environment, complementary to experimental approaches," concludes Regina de Vivie-Riedle, who is also a member of the e-conversion cluster of excellence.

One of the goals of the cluster is to one day transfer the efficiency of natural photocatalysts to artificial nano-bio hybrid systems for applications such as the production of hydrogen as an energy carrier or the conversion of carbon monoxide into fuel. This requires a better understanding of the energy transfer mechanism. With their results on photosystem I, the scientists have now taken an important step toward the realization of this goal.







Today's News

March 27, 2023

UChicago scientists discover easy way to make atomically-thin metal layers for new technology

'Smart' bandages monitor wounds and provide targeted treatment

Astronomers discover helium-burning white dwarf

Researchers detail groundbreaking Angelman syndrome development

New experiment translates quantum information between technologies in an important step for the quantum internet

Important step towards accurate use of stem cell-based disease models

Global natural history initiative builds database to address 21st century challenges

"Bizarre" Yoda acorn worm makes Top 10 Marine Species List

An experimental method for examining ultra-light dark matter using millimeter-wave sensing

'Deep proteome' project provides atlas for human complexity

Scientists and maple syrup producers develop a rapid test that analyzes the quality of maple sap

Graphene grows-physicists find a way to visualize it

Finding new ways to diagnose childhood brain tumours

Giant volcanic 'chain' spills secrets on inner workings of volcanoes

Visualizing spatial distribution of electric properties at microscales with liquid crystal droplets

A novel combination therapy for treating vancomycin-resistant bacterial infections

New study explores the 'tsunami' in Venus's clouds

Using high-precision quantum chemistry to study super-efficient energy transfer in photosynthesis



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful