Established in 2020 Wednesday, April 17, 2024


Thermal properties of new 2D materials for microchips can now be measured well



DELFT.- Making ever smaller and more powerful chips requires new ultrathin materials: 2D materials that are only 1 atom thick, or even just a couple of atoms. Think about graphene or ultra-thin silicon membrane for instance.

Scientists at TU Delft have taken an important step in application of these materials: they can now measure important thermal properties of ultrathin silicon membranes. A major advantage of their method is that no physical contact needs to be made with the membrane, so pristine properties can be measured and no complex fabrication is required.

The findings are published in the journal APL Materials.

"Extremely thin membranes have very different properties from the materials we see around us. For example, graphene is stronger than steel yet extremely flexible," says TU Delft researcher Gerard Verbiest. "These are properties that make these materials very suitable for use in sensors, provided those properties are properly understood."

As with many electronics, heat conduction is a big challenge for realizing the best performance. It helps determine how well a material will respond to certain loads a chip or sensor has to carry. Heat conduction in two dimensions is fundamentally different from that in three dimensions.

As a consequence, the thermal properties of 2D materials are of great interest, from both scientific and application points of view. However, few techniques are available for the accurate determination of these properties in ultrathin suspended membranes.

The researchers used an optomechanical methodology for extracting the thermal expansion coefficient, specific heat, and thermal conductivity of ultrathin membranes made of 2H-TaS2, FePS3, polycrystalline silicon, MoS2, and WSe2. It involved driving a suspended membrane using a power-modulated laser and measuring its time-dependent deflection with a second laser. This way, both the temperature-dependent mechanical fundamental resonance frequency of the membrane and characteristic thermal time constant at which the membrane cools down are measured.

Collaboration between science and industry is crucial for development of this technology. Verbiest says, "By measuring thin silicon membranes in this project we have shown the technique we developed in Delft to work on materials relevant to the semiconductor industry. This gives research an extra boost, because the insights then potentially lead immediately to a future industrial application, which is important for the Netherlands and a significant motivation for such research."

The obtained thermal properties are in good agreement with the values reported in the literature for the same materials. This research provides an optomechanical method for determining the thermal properties of ultrathin suspended membranes, which are difficult to measure otherwise. It provides a route toward improving our understanding of heat transport in the 2D limit and facilitates engineering of 2D structures with a dedicated thermal performance.







Today's News

April 20, 2024

Trash to treasure-Researchers turn metal waste into catalyst for hydrogen

Researchers shine light on rapid changes in Arctic and boreal ecosystems

Surf clams off the coast of Virginia reappear and rebound

'One ring to rule them all': How actin filaments are assembled by formins

Deadly bacteria show thirst for human blood: Research outlines the phenomenon of bacterial vampirism

Creating an island paradise in a fusion reactor

An ink for 3D-printing flexible devices without mechanical joints

Jupiter's moon Io has been volcanically active for billions of years

A better view with new mid-infrared nanoscopy

Surprising reversal in quantum systems

Interspecies competition led to even more forms of ancient human - defying evolutionary trends in vertebrates

Perfect balance: How the brain fine-tunes its sensitivity

Thermal properties of new 2D materials for microchips can now be measured well

Team finds direct evidence of 'itinerant breeding' in East Coast shorebird species

Study finds that human neuron signals flow in one direction

Light show in living cells: New method allows simultaneous fluorescent labeling of many proteins

Merging nuclear physics experiments and astronomical observations to advance equation-of-state research

Scientists discover new way to extract cosmological information from galaxy surveys

Compact quantum light processing: New findings lead to advances in optical quantum computing

First evidence of human occupation in lava tube cave in Saudi Arabia

Silent flight edges closer to take off, according to new research

New class of antimicrobials discovered in soil bacteria

Capturing DNA origami folding with a new dynamic model



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful