Established in 2020 Wednesday, April 17, 2024


Silent flight edges closer to take off, according to new research



BRISTOL.- The mystery of how futuristic aircraft-embedded engines, featuring an energy-conserving arrangement, make noise has been solved by researchers at the University of Bristol.

Their study, published in Journal of Fluid Mechanics, reveals for the first time how noise is generated and propagated from these engines, technically known as boundary layer ingesting (BLI) ducted fans. The paper is titled "Aeroacoustics of a ducted fan ingesting an adverse pressure gradient boundary layer."

BLI ducted fans are similar to the large engines found in modern airplanes but are partially embedded into the plane's main body instead of under the wings. As they ingest air from both the front and from the surface of the airframe, they don't have to work as hard to move the plane, so it burns less fuel.

The research, led by Feroz Ahmed from Bristol's School of Civil, Aerospace and Design Engineering under the supervision of Professor Mahdi Azarpeyvand, utilized the University National Aeroacoustic Wind Tunnel Facility. They were able to identify distinct noise sources originating from the duct, the rotating fan, and the air flowing over the curved airframe surface.

They found that the noise pattern changes depending on how much thrust the fan is producing. When the fan is producing high thrust, they observed a noise pattern similar to what is seen in fans without ducts. But when the fan is producing less thrust, the noise pattern changes because the duct itself starts making more noise.

Dr. Ahmed said, "Our study addresses this urgent issue of noise, which poses a major obstacle in obtaining certifications, by uncovering the physics behind the noise these configurations produce.

"By understanding the noise mechanisms in BLI ducted fans, it is hoped that industrial guidelines can be developed for quieter airframe-integrated propulsion systems in future aircraft concepts, from large-scale conventional aircraft to small-scale electric vertical take-off and landing, known as eVTOL, aircraft."

Projects such as the Bell X-22A, Embraer X, Airbus E-fan, Lilium Jet, Green Jet, and Hybrid Air Vehicle are leading the way in developing these systems for next-generation aircraft. They are becoming more popular due to advancements in powerful electric motors.

Dr. Ahmed said, "But, there is a catch for embedded ducted fans—how loud or quiet they are is still a mystery, especially when they are ingesting airflow from around the curved airframe surface.

"Previous research on BLI configurations mostly focused on fans without ducts, where the boundary layer forms over flat airframe surfaces. However there is a knowledge gap when it comes to the ducted fans ingesting air around curved airframe surfaces, as seen in projects like ONERA NOVA, NASA/MIT Aurora D8, and Airbus Nautilus.

"So, in this study, we have closely examined the various factors that contribute to the noise produced by the embedded ducted fans installed on curved airframe surfaces."

The researchers designed a BLI test rig featuring an electric ducted fan mounted next to a curved wall, replicating the setup of embedded engines seen in designs like the ONERA NOVA aircraft concept. They collected different types of data from the rig, including measurements of the fan's thrust output and the amount of noise generated.

By dissecting the complexities of noise interaction mechanisms among various sources, this framework helped uncover the underlying physics of where the noise originated and how it changed as the fan operated at different thrust levels.

Dr. Ahmed concluded, "With the growing demand for a pleasant flight experience with minimum environmental impact, there is a need for quieter aircraft. This research has potential applications in developing strategies to reduce noise emission in the aviation sector.

"Furthermore, our comprehensive investigation into unlocking the noise contributions in BLI ducted fans has the potential to steer significant research activity within the fluid mechanics community. This, in turn, could foster a deeper understanding and further exploration of aeroacoustics phenomena in ducted fans exposed to a broad spectrum of incoming turbulent flows.

"Our study sheds light on how noise is generated by futuristic embedded ducted fans mounted on curved airframe surfaces, revealing that noise patterns vary with fan thrust levels, offering crucial insights for quieter next-generation aircraft design."







Today's News

April 20, 2024

Trash to treasure-Researchers turn metal waste into catalyst for hydrogen

Researchers shine light on rapid changes in Arctic and boreal ecosystems

Surf clams off the coast of Virginia reappear and rebound

'One ring to rule them all': How actin filaments are assembled by formins

Deadly bacteria show thirst for human blood: Research outlines the phenomenon of bacterial vampirism

Creating an island paradise in a fusion reactor

An ink for 3D-printing flexible devices without mechanical joints

Jupiter's moon Io has been volcanically active for billions of years

A better view with new mid-infrared nanoscopy

Surprising reversal in quantum systems

Interspecies competition led to even more forms of ancient human - defying evolutionary trends in vertebrates

Perfect balance: How the brain fine-tunes its sensitivity

Thermal properties of new 2D materials for microchips can now be measured well

Team finds direct evidence of 'itinerant breeding' in East Coast shorebird species

Study finds that human neuron signals flow in one direction

Light show in living cells: New method allows simultaneous fluorescent labeling of many proteins

Merging nuclear physics experiments and astronomical observations to advance equation-of-state research

Scientists discover new way to extract cosmological information from galaxy surveys

Compact quantum light processing: New findings lead to advances in optical quantum computing

First evidence of human occupation in lava tube cave in Saudi Arabia

Silent flight edges closer to take off, according to new research

New class of antimicrobials discovered in soil bacteria

Capturing DNA origami folding with a new dynamic model



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful