Established in 2020 Wednesday, April 17, 2024


Copolymer helps remove pervasive PFAS toxins from environment
Illinois engineers Kwiyong Kim, left, Xiao Su, Johannes Elbert and Paola Baldaguez Medina are part of a team that developed a new polymer electrode device that can capture and destroy PFAS contaminants present in water. Image courtesy: L. Brian Stauffer.



CHAMPAIGN, ILL.- Researchers have demonstrated that they can attract, capture and destroy PFAS – a group of federally regulated substances found in everything from nonstick coatings to shampoo and nicknamed “the forever chemicals” due to their persistence in the natural environment.

Using a tunable copolymer electrode, engineers from the University of Illinois at Urbana-Champaign captured and destroyed perfluoroalkyl and polyfluoroalkyl substances present in water using electrochemical reactions. The proof-of-concept study is the first to show that copolymers can drive electrochemical environmental applications, the researchers said.

The results of the study are published in the journal Advanced Functional Materials.

“Exposure to PFAS has gained intense attention recently due to their widespread occurrence in natural bodies of water, contaminated soil and drinking water,” said Xiao Su, a professor of chemical and biomolecular engineering who led the study in collaboration with civil and environmental engineering professors Yujie Men and Roland Cusick.

PFAS are typically present in low concentrations, and devices or methods designed to remove them must be highly selective toward them over other compounds found in natural waters, the researchers said. PFAS are electrically charged, held together by highly stable bonds, and are water-resistant, making them difficult to destroy using traditional waste-disposal methods.




“We have found a way to tune a copolymer electrode to attract and adsorb – or capture – PFAS from water,” Su said. “The process not only removes these dangerous contaminants, but also destroys them simultaneously using electrochemical reactions at the opposite electrode, making the overall system highly energy-efficient.”

To evaluate the method, the team used various water samples that included municipal wastewater, all spiked with either a low or moderate concentration of PFAS.

“Within three hours of starting the electrochemical adsorption process in the lab, we saw a 93% reduction of PFAS concentration in the low concentration spiked samples and an 82.5% reduction with a moderate concentration spiked samples, which shows the system can be efficient for different contamination contexts – such as in drinking water or even chemical spills,” Su said.

Based on concepts first proposed in Su’s previous work with arsenic removal, the process combines the separation and reaction steps in one device. “This is an example of what we call processes intensification, which we believe is an important approach for addressing environmental concerns related to energy and water,” Su said.

The team plans to continue to work with various emerging contaminants, including endocrine disruptors. “We are also very interested in seeing how these basic copolymer concepts might work outside of environmental systems and help perform challenging chemical separations, such as drug purification in the pharmaceutical industry,” Su said.

Postdoctoral researcher Kwiyong Kim and graduate student Paola Baldaguez Medina are the lead authors of the study. Postdoctoral researchers Johannes Elbert and Emmanuel Kayiwa also contributed to the study.

The U. of I., the National Science Foundation and the Illinois Water Resources Center supported this study.







Today's News

October 31, 2020

Artificial intelligence model detects asymptomatic Covid-19 infections through cellphone-recorded coughs

Covid-19 patients infect half of household: US govt study

UCLA researchers create millions of diverse T cells from a single blood stem cell

Cracking the secrets of dinosaur eggshells

Estrogenic and anti-estrogenic effects of PFASs could depend on the presence of estrogen

Deep learning algorithms helping to clear space junk from our skies

First international, Chinese expert meeting on virus origin: WHO

Australian invention can save lives and boost productivity

Trends in hurricane behavior show stronger, slower and farther-reaching storms

PM's Prize for Science honours gravitational-wave researchers

Flash graphene rocks strategy for plastic waste

Rice chemists pitch 'green' method for making pharmaceutical intermediates

The chemistry behind self-driving cars

Cellular networks vulnerable to wildfires across U.S.

Shedding light on how urban grime affects chemical reactions in cities

Truncated immune system receptors may regulate cellular activity

Copolymer helps remove pervasive PFAS toxins from environment

A patch that could help heal broken hearts



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful