Established in 2020 Wednesday, April 17, 2024


A vital tool to study virus evolution in the test tube
Variants of viruses, such as that causing COVID-19, can now be quickly studied in the laboratory, even before they emerge in nature and become a major public health challenge. Image: Pixabay.



BRISBANE.- Variants of viruses, such as that causing COVID-19, can now be quickly studied in the laboratory, even before they emerge in nature and become a major public health challenge.

The University of Queensland, QIMR Berghofer Medical Research Institute, Peter Doherty Institute for Infection and Immunity, Monash University, and Queensland Health have developed a technology to manipulate viruses synthetically allowing rapid analysis and mapping of new potential virus variants.

UQ’s lead researcher Professor Alexander Khromykh said the technology was ideal for use during a global pandemic such as COVID-19.

“This technique should give us the ability to answer questions about whether potential virus variants are susceptible to a particular drug or vaccine, even before they emerge in nature,” Professor Khromykh said.

“Up until now, we’ve mostly just waited and reacted to viral variants as they emerge, and in the case of SARS-CoV-2 the world has been hit by Indian, UK and South African variants*, just to name a few.

“Now we can mimic the massive ‘experiment’ going on in nature – where these mutations pop up due to natural selection – but we can do it safely in a strictly controlled and highly regulated biosecurity laboratory environment.”

The UQ-developed process uses copies of fragments from the viral genetic material to assemble the functional viral genome in a test tube.

The team hopes that this should allow scientists to rapidly generate virus variants and assess their potential to evade antiviral treatments and vaccine-induced immunity.

QIMR Berghofer helped to evaluate infection and disease caused by the ‘test tube’-made virus in pre-clinical models to ensure the technology was able to generate authentic viruses.

Professor Andreas Suhrbier from QIMR Berghofer said the research was essential, as viruses were changing all the time.

“We can now monitor changes in viruses like SARS-CoV-2 and can see which variants may not respond to certain vaccines and anti-viral treatments.

“We can also investigate whether potential variants are more or less virulent in mice, and find out which drugs and vaccines will be effective.

“It’s great to finally have this vital tool and start tackling these challenging questions.”

The research is published in Nature Communications (DOI: 10.1038/s41467-021-23779-5).

*WHO has now re-classified these variants as Alpha (UK), Beta (South African) and Delta (Indian).

The study featured collaborations from research groups including Associate Professor Daniel Watterson, Dr Jody Hobson-Peters, Professor Paul Young and Professor Roy Hall from UQ; Professor Jason Mackenzie’s team at the Peter Doherty Institute for Infection and Immunity; Associate Professor Fasseli Coulibaly’s team at Monash University; and Frederick Moore and the team at Forensic and Scientific Services Public Health Virology at Queensland Health.







Today's News

June 10, 2021

The strange afterglow of a gamma-ray burst

Canadian telescope detects 500 fast radio bursts in a year, quadrupling number of known FRBs

Trained viruses prove more effective at fighting antibiotic resistance

First glimpse of brains retrieving mistaken memories observed

Researchers link ancient wooden structure to water ritual

Earth's meteorite impacts over past 500 million years tracked

Nottingham expert wins award for work replacing the use of animals in research

Cholesterol metabolite induces production of cancer-promoting vesicles

Stabilizing gassy electrolytes could make ultra-low temperature batteries safer

Predisposition to addiction may be genetic

Cardiac MRI effective in detecting inflammation of the heart in athletes who had COVID-19

Super productive 3D bioprinter could help speed up drug development

The digestive system of cows influences human's vitamin B12 intake

A vital tool to study virus evolution in the test tube

Common diabetes drug shows promise as treatment for COVID-19 lung inflammation

For a low-carbon cement recipe, Stanford scientists look to Earth's cauldrons

Tiny particles power chemical reactions

Overexpression transcription factor in plant improves drought tolerance



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful