Established in 2020 Wednesday, April 17, 2024


A device that cracks milk protein
The so-called Vortex Fluidic Device has previously been used in an array of experiments to successfully 'un-boil' egg protein and even break the molecular bonds of one of the world's hardest material, carbon nanotubes. Image: Pixabay.



BEDFORD PARK.- After gaining world attention by 'unboiling' egg protein, Flinders University scientists have now used an Australian-made novel thin film microfluidic device to manipulate Beta-lactoglobulin (β-lactoglobulin), the major whey protein in cow, sheep and other mammal milks.

The so-called Vortex Fluidic Device has previously been used in an array of experiments to successfully 'un-boil' egg protein and even break the molecular bonds of one of the world's hardest material, carbon nanotubes.

In the latest application, published in Molecules, College of Science and Engineering experts have combined the capabilities of the VFD with a new form of biosensor called TPE-MI, which is an aggregation-induced emission luminogen (AIEgen).

"In the human body, protein folding is a regular process which in some cases may involve misfolding and aggregation such as in gene mutation, which can upset the balance," says Professor Youhong Tang, whose research focuses on expanding AIEgen technologies.




"One is example is the buildup of amyloid proteins, which is associated with diseases such as Alzheimer's, Parkinson's and Huntington's. Finding ways to monitor these protein levels—and even reversing high levels of these cellular aggregations—could lead to future therapies."

SA Scientist of the Year Professor Colin Raston, who designed the VFD, says the combination of both technologies produced some promising results in fields of medical discovery.

"In this latest study, we showed how vital proteins can be manipulated—unfolded and refolded—using β-lactoglobulin, which is a relatively simple, low molecular weight protein.

"Combining VFD and AIE technologies provides a fully capable and robust method for controlling and monitoring the progress of protein denaturation and renaturation."

The research team will now use the technology combination on other proteins, focusing on those highly related to Alzheimer's disease, Parkinson's disease, and Huntington's disease.







Today's News

July 25, 2021

InSight mission: Mars unveiled

Using snakes to monitor Fukushima radiation

Eyes wide shut: How newborn mammals dream the world they're entering

New composite material has potential for medical use

Soft skin patch could provide early warning for strokes, heart attacks

Autonomous self-healing seen in piezoelectric molecular crystals

Stanford researchers develop tool to drastically speed up the study of enzymes

'Feel good' brain messenger can be willfully controlled, new study reveals

Satellites track "bog breathing" to help monitor peatlands

Discovery of unknown brain-repair process could lead to new epilepsy treatments

Do vaccinated people need to go back to masking?

A device that cracks milk protein

Researchers discover that protein switches functions to regulate DNA replication

Early-life social connections influence gene expression, stress resilience

Supercomputer-generated models provide better understanding of esophageal disorders

For more precise drug treatments, 'squeeze' the genome: study finds

An autonomous system to assemble reconfigurable robotic structures in space

Gene therapy may preserve vision in retinal disease and serious retinal injury



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful