Established in 2020 Wednesday, April 17, 2024


How the Sun's magnetic forces arrange gas particles
Researchers observed how magnetic forces lifted a prominence by 25,000 kilometers – about two Earth diameters – within ten minutes. Image courtesy: NASA/SDO and the AIA, EVE, and HMI science team; adjustments: AIP.



GÖTTINGEN.- Solar prominences hover above the visible solar disk like giant clouds, held there by a supporting framework of magnetic forces, originating from layers deep within the Sun. The magnetic lines of force are moved by ever-present gas currents—and when the supporting framework moves, so does the prominence cloud. A research team from the University of Göttingen and the astrophysics institutes at Paris, Potsdam and Locarno observed how magnetic forces lifted a prominence by 25,000 kilometers—about two Earth diameters—within ten minutes. The results of the study were published in The Astrophysical Journal.

This uplift corresponds to a speed of 42 kilometers per second, which is about four times the speed of sound, in the prominence. Oscillations occurred with a period of 22 seconds, during which positively charged ions of iron were up to 70 per cent faster than neutral helium atoms. The charged iron ions have to follow the movement of the magnetic field but the uncharged helium atoms are not affected in the same way. In fact, the helium atoms are carried along by the ions, but only partly because there are not enough collisions between the two types of particle since the gas pressure is too low.

Such conditions—where partially ionized gas exists with few collisions—play an important role in astrophysics. Their role is not just demonstrated in solar prominences, but also in the following: the huge gas clouds from which stars and planets form; the gas that fills the vast expanse between stars; and in the gas between galaxies. Theoretical astrophysicists have already simulated such conditions as two fluids interacting only weakly with each other. "Some of the previous assumptions used in model calculations can now be verified thanks to these new measurements in our results," says Dr. Eberhard Wiehr from the Institute for Astrophysics at the University of Göttingen.

The team carried out the observations at the solar telescope in Locarno, where it is only possible to measure two emission lines simultaneously. Now the scientists are planning extended observations at the French telescope on Tenerife, where several lines can be measured at the same time. In addition, the light intensity for this telescope is increased four-fold, which will enable such a short exposure time for the light-sensitive cameras that even shorter oscillation periods will be measurable. "We may then find even higher velocity differences between the charged ions and the neutral atoms," added Wiehr.







Today's News

October 15, 2021

Holey metalens! New metalens focuses light with ultra-deep holes

Humans enjoyed blue cheese and beer 2,700 years ago: study

Over a thousand cosmic explosions detected in 47 days

Discovery of new role for brain's immune cells could have alzheimer's implications

Did Venus ever have oceans?

HKUST research shows growing dominance of diatom algae in the Pearl River Estuary

How many people get 'long COVID?' More than half, researchers find

Moderna or Pfizer booster works better for people vaccinated with J&J: study

Cellular environments shape molecular architecture

Solving mystery of rare cancers directly caused by HIV

New clues toward treating pediatric brain tumors harboring epigenetic mutation

New proteins enable scientists to control cell activities

New test rapidly detects bacteria associated with greater risk of preterm birth

How the Sun's magnetic forces arrange gas particles

Did a black hole eating a star generate a neutrino? Unlikely, new study shows

Liquid metal proven to be cheap and efficient CO2 converter

Fluorescent spray lights up tumors for easy detection during surgery

DNA reveals how ice ages affected African rainforests



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful