Established in 2020 Wednesday, April 17, 2024


Prehistoric shark hid its largest teeth
Illustration of the prehistoric shark "Ferromirum oukherbouchi". Image courtesy: Christian Klug, UZH.



ZURICH.- Many modern sharks have row upon row of formidable sharp teeth that constantly regrow and can easily be seen if their mouths are just slightly opened. But this was not always the case. The teeth in the ancestors of today’s cartilaginous fish (chondrichthyan), which include sharks, rays and chimaeras, were replaced more slowly. With mouths closed, the older, smaller and worn out teeth of sharks stood upright on the jaw, while the younger and larger teeth pointed towards the tongue and were thus invisible when the mouth was closed.

Jaw reconstruction thanks to computed tomography
Paleontologists at the University of Zurich, the University of Chicago and the Naturalis Biodiversity Center in Leiden (Netherlands) have now examined the structure and function of this peculiar jaw construction based on a 370-million-year-old chondrichthyan from Morocco. Using computed tomography scans, the researchers were able not only to reconstruct the jaw, but also print it out as a 3D model. This enabled them to simulate and test the jaw’s mechanics.




What they discovered in the process was that unlike in humans, the two sides of the lower jaw were not fused in the middle. This enabled the animals to not only drop the jaw halves downward but at the same automatically rotate both outwards. “Through this rotation, the younger, larger and sharper teeth, which usually pointed toward the inside of the mouth, were brought into an upright position. This made it easier for animals to impale their prey,” explains first author Linda Frey. “Through an inward rotation, the teeth then pushed the prey deeper into the buccal space when the jaws closed.”

Jaw joint widespread in the Paleozoic era
This mechanism not only made sure the larger, inward-facing teeth were used, but also enabled the animals to engage in what is known as suction-feeding. “In combination with the outward movement, the opening of the jaws causes sea water to rush into the oral cavity, while closing them results in a mechanical pull that entraps and immobilizes the prey.”

Since cartilaginous skeletons are barely mineralized and generally not that well preserved as fossils, this jaw construction has evaded researchers for a long time. “The excellently preserved fossil we’ve examined is a unique specimen,” says UZH paleontologist and last author Christian Klug. He and his team believe that the described type of jaw joint played an important role in the Paleozoic era. With increasingly frequent tooth replacement, however, it became obsolete over time and was replaced by the often peculiar and more complex jaws of modern-day sharks and rays.







Today's News

November 19, 2020

Merging stars produce glowing Blue Ring Nebula

World-first skin cancer treatment aims to help transplant patients

Study reveals how smoking worsens COVID-19 infection in the airways

Prehistoric shark hid its largest teeth

Scientists defy nature to make insta-bling at room temperature

Will small rockets finally lift off?

3D-printed, lifelike heart models could help train tomorrow's surgeons

Children produce different antibodies in response to new coronavirus

A DNA-based nanogel for targeted chemotherapy

Wild animal populations not declining as feared: study

Gene signature predicts whether localized prostate cancer is likely to spread

Study: Solar geoengineering may not be a long-term solution for climate change

Alzheimer's disease drug may help fight against antibiotic resistance

Gut microbiome manipulation could result from virus discovery

Antibiotic resistance genes in three Puerto Rican watersheds after Hurricane Maria

Scientists identify brain cells that drive wakefulness and resist general anesthetics

For neural research, wireless chip shines light on the brain

Stanford researchers combine Zillow and census data to determine residential water needs



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful