Established in 2020 Wednesday, April 17, 2024


Research points to a strategy for overcoming colorectal cancers' immunotherapy resistance
Histopathologic image of colonic carcinoid. Image courtesy: Wikipedia/CC BY-SA 3.0.



BOSTON, MASS.- Immune checkpoint inhibitors, which unleash the immune response against tumor cells, have revolutionized cancer treatment; however, the medications aren't effective in a large number of patients, including those with colorectal cancer. New research published in PNAS that was led by investigators at Massachusetts General Hospital and the University of Geneva (UNIGE) provides insights on why some types of colorectal cancer don't respond to immune checkpoint inhibitors and offers a strategy to overcome their resistance.

"Colorectal cancer is the second leading cause of cancer-related death in the United States and worldwide," says senior and co–corresponding author Rakesh K. Jain, Ph.D., director of the E.L. Steele Laboratories for Tumor Biology at MGH and the Andrew Werk Cook Professor of Radiation Oncology at Harvard Medical School (HMS). "A major cause of mortality in patients with colorectal cancer is the development of liver metastases, which is the spread of cancer to the liver."




Jain explains that most colorectal cancers that spread to the liver do not respond to immune checkpoint inhibitors. When the team injected these colorectal cancer cells under the skin in the hind flank of mice (the most commonly used method for studying cancer in these animals), the cells responded well to immune checkpoint inhibitors, unlike what happens in patients. To address this discrepancy, the investigators decided to take an approach that is referred to as orthotopic (meaning "the normal place in the body") by injecting the cancer cells in the relevant anatomical sites—for example, the colon, where primary colorectal cancer cells grow, and the liver, where these cells metastasize. "We found that these colorectal cancer mouse models were profoundly resistant to immune checkpoint inhibitors, similar to what is seen in patients," says co-corresponding author Dai Fukumura, MD, Ph.D., deputy director of the E.L. Steele Laboratories at MGH and associate professor of radiation oncology at HMS. "Our results highlight how the environment in which cancer cells grow can influence the effectiveness of immunotherapy. Also, and most important, they indicate that these orthotopic cancer models should be used to study resistance to immune checkpoint blockade as observed in patients with colorectal cancer."

To determine how liver metastases are resistant to immune checkpoint blockade, Jain and his colleagues investigated the composition of immune cells present in liver metastases in mice and compared it with that of colorectal cancer cells injected under the skin. "We found that liver metastases lacked certain immune cells—called dendritic cells—that are required for the activation of other immune cells known as cytotoxic T lymphocytes, which can kill cancer cells," says lead author William W. Ho, Ph.D., a research fellow at MGH. "We saw a similar situation in patients—their liver metastases showed a lack of dendritic cells and activated T lymphocytes."

When the team augmented the number of dendritic cells within liver metastases (by giving mice a growth factor called Flt3L), the treatment led to an increase in cytotoxic T lymphocytes within the tumors and caused the tumors to become sensitive to immune checkpoint inhibitors.

"Our study highlights the importance of orthotopic tumor models in immunotherapy studies and underscores the relevance of dendritic cells for effective immune checkpoint blockade," says co–corresponding author Mikael J. Pittet, Ph.D., professor of Immunology at UNIGE. "It also points to the possibility of developing new therapies that could be effective in controlling resistant colorectal cancer. For example, the combination of Flt3L and immune checkpoint inhibitors is an interesting therapeutic option that is worth evaluating in clinical trials."







Today's News

October 13, 2021

Scientists discover a highly potent antibody against SARS-CoV-2

Genetic study explores how human pregnancy is unique

Chemists discover faster-acting forms of insecticide imidacloprid

Researchers say fossil shows humans, dogs lived in C. America in 10,000 BC

Antiviral compound blocks SARS-CoV-2 from entering cells

Researchers identify universal laws in the turbulent behavior of active fluids

Brain damage caused by long stays in space

Study explores adaptation in island, mainland anoles

ESO images some of the biggest asteroids in our Solar System

Power walk: Engineers develop powered exoskeleton to help amputees walk with less effort

New scientific resource will help uncover the genetic underpinnings of type 2 diabetes

Lightning strikes may trigger short-term thinning in the ozone layer

Few adverse health effects in wildlife exposed to low levels of radiation from the Fukushima nuclear accident

Teaching ancient brains new tricks: New research shows how modern physicists think

Precision medicine data dive shows water pill may be viable to test as Alzheimer's treatment

Research points to a strategy for overcoming colorectal cancers' immunotherapy resistance

To probe an unexplored space of hard problems, researchers play the devil's advocate

Study sheds light on photosynthesis in iron-low leaves



 


Editor & Publisher: Jose Villarreal
Art Director: Juan José Sepúlveda Ramírez



Tell a Friend
Dear User, please complete the form below in order to recommend the ResearchNews newsletter to someone you know.
Please complete all fields marked *.
Sending Mail
Sending Successful